neural tube formation
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 56 (8) ◽  
pp. 1147-1163.e6
Author(s):  
Elena Gonzalez-Gobartt ◽  
José Blanco-Ameijeiras ◽  
Susana Usieto ◽  
Guillaume Allio ◽  
Bertrand Benazeraf ◽  
...  

Author(s):  
Elena Gonzalez-Gobartt ◽  
José Blanco-Ameijeiras ◽  
Susana Usieto ◽  
Guillaume Allio ◽  
Bertrand Benazeraf ◽  
...  

SUMMARYBody axis elongation is a hallmark of the vertebrate embryo, involving the architectural remodelling of the tailbud. Although it is clear how bi-potential neuro-mesodermal progenitors (NMPs) contribute to embryo elongation, the dynamic events that lead to de novo lumen formation and that culminate in the formation of a 3-Dimensional, secondary neural tube from NMPs, are poorly understood. Here, we used in vivo imaging of the chicken embryo to show that cell intercalation downstream of TGF-beta/SMAD3 signalling is required for secondary neural tube formation. Our analysis describes the initial events in embryo elongation including lineage restriction, the epithelial-to-mesenchymal transition of NMPs, and the initiation of lumen formation. Importantly, we show that the resolution of a single, centrally positioned continuous lumen, which occurs through the intercalation of central cells, requires SMAD3 activity. We anticipate that these findings will be relevant to understand caudal, skin-covered neural tube defects, amongst the most frequent birth defects detected in humans.HIGHLIGHTS.- Initiation of the lumen formation follows the acquisition of neural identity and epithelial polarization..- Programmed cell death is not required for lumen resolution..- Resolution of a single central lumen requires cell intercalation, driven by Smad3 activity.- The outcome of central cell division preceding cell intercalation, varies along the cranio-caudal axis.


2020 ◽  
Author(s):  
Tim Pieters ◽  
Ellen Sanders ◽  
Huiyu Tian ◽  
Jolanda van Hengel ◽  
Frans Van Roy

Abstract Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported. Results We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctn fl/fl ;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin. Conclusions These results indicate that p120ctn is required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.


2020 ◽  
Author(s):  
Tim Pieters ◽  
Ellen Sanders ◽  
Huiyu Tian ◽  
Jolanda van Hengel ◽  
Frans Van Roy

Abstract Background p120 catenin (p120ctn) is an important component in the cadherin-catenin cell adhesion complex because it stabilizes cadherin-mediated intercellular junctions. Outside these junctions, p120ctn is actively involved in the regulation of small GTPases of the Rho family, in actomyosin dynamics and in transcription regulation. We and others reported that loss of p120ctn in mouse embryos results in an embryonic lethal phenotype, but the exact developmental role of p120ctn during brain formation has not been reported.Results We used Cre/loxP technology to achieve full or tissue-specific deletion of p120ctn in the developing embryo. We combined floxed p120ctn mice with Del-Cre or Wnt1-Cre mice to deplete p120ctn from either all cells or specific brain and neural crest cells. Complete loss of p120ctn in mid-gestation embryos resulted in an aberrant morphology, including growth retardation, failure to switch from lordotic to fetal posture, and defective neural tube formation and neurogenesis. By expressing a wild-type p120ctn from the ROSA26 locus in p120ctn-null mouse embryonic stem cells, we could recapitulate neurogenesis and partially rescue neurogenesis. To further investigate the developmental role of p120ctn in neural tube formation, we generated conditional p120ctnfl/fl;Wnt1Cre knockout mice. p120ctn deletion in Wnt1-expressing cells resulted in neural tube closure defects (NTDs) and craniofacial abnormalities. These defects could not be correlated with misregulation of brain marker genes or cell proliferation. In contrast, we found that p120ctn is required for proper expression of the cell adhesion components N-cadherin, E-cadherin and β-catenin, and of actin-binding proteins cortactin and Shroom3 at the apical side of neural folds. This region is of critical importance for closure of neural folds. Surprisingly, the lateral side of mutant neural folds showed loss of p120ctn, but not of N-cadherin, β-catenin or cortactin.Conclusions These results indicate that p120ctn is strictly required for neurogenesis and neurulation. Elimination of p120ctn in cells expressing Wnt1 affects neural tube closure by hampering correct formation of specific adhesion and actomyosin complexes at the apical side of neural folds. Collectively, our results demonstrate the crucial role of p120ctn during brain morphogenesis.


2018 ◽  
Vol 38 (20) ◽  
pp. 4762-4773 ◽  
Author(s):  
Eduardo B. Sequerra ◽  
Raman Goyal ◽  
Patricio A. Castro ◽  
Jacqueline B. Levin ◽  
Laura N. Borodinsky

Sign in / Sign up

Export Citation Format

Share Document