multiplicative character
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 33 (2) ◽  
pp. 569-577
Author(s):  
Sazzad Ali Biswas

Abstract By work of John Tate we can associate an epsilon factor with every multiplicative character of a local field. In this paper, we determine the explicit signs of the epsilon factors for symplectic type characters of K × {K^{\times}} , where K / F {K/F} is a wildly ramified quadratic extension of a non-Archimedean local field F of characteristic zero.



2018 ◽  
Vol 2020 (10) ◽  
pp. 2881-2917 ◽  
Author(s):  
Junyan Xu

Abstract We prove a stratification result for certain families of n-dimensional (complete algebraic) multiplicative character sums. The character sums we consider are sums of products of r multiplicative characters evaluated at rational functions, and the families (with nr parameters) are obtained by allowing each of the r rational functions to be replaced by an “offset”, that is, a translate, of itself. For very general such families, we show that the stratum of the parameter space on which the character sum has maximum weight $n+j$ has codimension at least j⌊(r − 1)/2(n − 1)⌋ for 1 ≤ j ≤ n − 1 and ⌈nr/2⌉ for j = n. This result is used to obtain multivariate Burgess bounds in joint work with Lillian Pierce.





2014 ◽  
Vol 90 (3) ◽  
pp. 376-390 ◽  
Author(s):  
MEI-CHU CHANG ◽  
IGOR E. SHPARLINSKI

AbstractWe estimate double sums $$\begin{eqnarray}S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})=\mathop{\sum }\limits_{x\in {\mathcal{I}}}\mathop{\sum }\limits_{{\it\lambda}\in {\mathcal{G}}}{\it\chi}(x+a{\it\lambda}),\quad 1\leq a<p-1,\end{eqnarray}$$ with a multiplicative character ${\it\chi}$ modulo $p$ where ${\mathcal{I}}=\{1,\dots ,H\}$ and ${\mathcal{G}}$ is a subgroup of order $T$ of the multiplicative group of the finite field of $p$ elements. A nontrivial upper bound on $S_{{\it\chi}}(a,{\mathcal{I}},{\mathcal{G}})$ can be derived from the Burgess bound if $H\geq p^{1/4+{\it\varepsilon}}$ and from some standard elementary arguments if $T\geq p^{1/2+{\it\varepsilon}}$, where ${\it\varepsilon}>0$ is arbitrary. We obtain a nontrivial estimate in a wider range of parameters $H$ and $T$. We also estimate double sums $$\begin{eqnarray}T_{{\it\chi}}(a,{\mathcal{G}})=\mathop{\sum }\limits_{{\it\lambda},{\it\mu}\in {\mathcal{G}}}{\it\chi}(a+{\it\lambda}+{\it\mu}),\quad 1\leq a<p-1,\end{eqnarray}$$ and give an application to primitive roots modulo $p$ with three nonzero binary digits.



2014 ◽  
Vol 25 ◽  
pp. 132-133 ◽  
Author(s):  
Changyong Peng ◽  
Yong Shen ◽  
Yuefei Zhu ◽  
Chunlei Liu








2012 ◽  
Vol 92 (1) ◽  
pp. 1-13 ◽  
Author(s):  
WILLIAM D. BANKS ◽  
JOHN B. FRIEDLANDER ◽  
MOUBARIZ Z. GARAEV ◽  
IGOR E. SHPARLINSKI

AbstractWe give new bounds on sums of the form ∑ n≤NΛ(n)exp (2πiagn/m) and ∑ n≤NΛ(n)χ(gn+a), where Λ is the von Mangoldt function, m is a natural number, a and g are integers coprime to m, and χ is a multiplicative character modulo m. In particular, our results yield bounds on the sums ∑ p≤Nexp (2πiaMp/m) and ∑ p≤Nχ(Mp) with Mersenne numbers Mp=2p−1, where p is prime.



Sign in / Sign up

Export Citation Format

Share Document