pseudorandom sequences
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 47)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 17 (3) ◽  
pp. 219-234
Author(s):  
Rajamandrapu Srinivas ◽  
N. Mayur

Compression and encryption of images are emerging as recent topics in the area of research to improve the performance of data security. A joint lossless image compression and encryption algorithm based on Integer Wavelet Transform (IWT) and the Hybrid Hyperchaotic system is proposed to enhance the security of data transmission. Initially, IWT is used to compress the digital images and then the encryption is accomplished using the Hybrid Hyperchaotic system. A Hybrid Hyperchaotic system; Fractional Order Hyperchaotic Cellular Neural Network (FOHCNN) and Fractional Order Four-Dimensional Modified Chua’s Circuit (FOFDMCC) is used to generate the pseudorandom sequences. The pixel substitution and scrambling are realized simultaneously using Global Bit Scrambling (GBS) that improves the cipher unpredictability and efficiency. In this study, Deoxyribonucleic Acid (DNA) sequence is adopted instead of a binary operation, which provides high resistance to the cipher image against crop attack and salt-and-pepper noise. It was observed from the simulation outcome that the proposed Hybrid Hyperchaotic system with IWT demonstrated more effective performance in image compression and encryption compared with the existing models in terms of parameters such as unified averaged changed intensity, a number of changing pixels rate, and correlation coefficient.


2021 ◽  
Vol 58 (3) ◽  
pp. 319-334
Author(s):  
Huaning Liu ◽  
Yinyin Yang

In cryptography one needs pseudorandom sequences whose short subsequences are also pseudorandom. To handle this problem, Dartyge, Gyarmati and Sárközy introduced weighted measures of pseudorandomness of binary sequences. In this paper we continue the research in this direction. We introduce weighted pseudorandom measure for multidimensional binary lattices and estimate weighted pseudorandom measure for truly random binary lattices. We also give lower bounds for weighted measures of even order and present an example by using the quadratic character of finite fields.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1447
Author(s):  
Gopal Ghosh ◽  
Kavita Verma ◽  
Divya Anand ◽  
Sahil Verma ◽  
Danda B. Rawat ◽  
...  

Due to Internet of Things (IoT), it has become easy to surveil the critical regions. Images are important parts of Surveillance Systems, and it is required to protect the images during transmission and storage. These secure surveillance frameworks are required in IoT systems, because any kind of information leakage can thwart the legal system as well as personal privacy. In this paper, a secure surveillance framework for IoT systems is proposed using image encryption. A hyperchaotic map is used to generate the pseudorandom sequences. The initial parameters of the hyperchaotic map are obtained using partial-regeneration-based non-dominated optimization (PRNDO). The permutation and diffusion processes are applied to generate the encrypted images, and the convolution neural network (CNN) can play an essential role in this part. The performance of the proposed framework is assessed by drawing comparisons with competitive techniques based on security parameters. It shows that the proposed framework provides promising results as compared to the existing techniques.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1000
Author(s):  
Heping Wen ◽  
Jiajun Xu ◽  
Yunlong Liao ◽  
Ruiting Chen ◽  
Danze Shen ◽  
...  

In the current network and big data environment, the secure transmission of digital images is facing huge challenges. The use of some methodologies in artificial intelligence to enhance its security is extremely cutting-edge and also a development trend. To this end, this paper proposes a security-enhanced image communication scheme based on cellular neural network (CNN) under cryptanalysis. First, the complex characteristics of CNN are used to create pseudorandom sequences for image encryption. Then, a plain image is sequentially confused, permuted and diffused to get the cipher image by these CNN-based sequences. Based on cryptanalysis theory, a security-enhanced algorithm structure and relevant steps are detailed. Theoretical analysis and experimental results both demonstrate its safety performance. Moreover, the structure of image cipher can effectively resist various common attacks in cryptography. Therefore, the image communication scheme based on CNN proposed in this paper is a competitive security technology method.


2021 ◽  
Vol 2 (12) ◽  
pp. 18-29
Author(s):  
Pablo Freyre ◽  
Oristela Cuellar ◽  
Nelson Díaz ◽  
Adrián Alfonso

Abstract—In this paper, we present the dynamic cryptographic algorithms for long states named ACDEL-2D and ACDEL-3D. The first one was inspired by Rijndael and the second one was inspired by 3D, a three-dimensional block cipher. In both proposals, MDS matrices are used alternately on rows and columns of the state and all transformations used in the encryption process are randomly selected depending on pseudorandom sequences. In the block cipher ACDEL-3D the state takes the form of a rectangular parallelepiped or cuboid.Tóm tắt—Trong bài báo này, chúng tôi trình bày các thuật toán mật mã động cho các trạng thái dài, có tên là ACDEL-2D và ACDEL-3D. Thuật toán đầu tiên bắt nguồn từ thuật toán Rijndael và thuật toán thứ hai bắt nguồn từ thuật toán 3D, một thuật toán với khối dữ liệu được biểu diễn ở dạng  ba chiều. Cả hai đề xuất đều sử dụng xen kẽ ma trận MDS trong các hàng và cột của trạng thái và tất cả các phép biến đổi được sử dụng trong quá trình mã hóa được chọn ngẫu nhiên tùy thuộc vào chuỗi giả ngẫu nhiên. Trong mật mã khối ACDEL-3D, trạng thái có dạng hình chữ nhật song song hoặc hình khối. 


2021 ◽  
Vol 2 (12) ◽  
pp. 3-10
Author(s):  
Andrey Spirin ◽  
Alexander Kozachok

Abstract—Currently, the number of information leaks caused by internal violators has increased. One of the possible channels for information leaks is the transmission of data in encrypted or compressed form, since modern DLP (data leakage prevention) systems are not able to detect signatures and other information related to confidential information in such data. The article presents an algorithm for classifying sequences formed by encryption and compression algorithms. An array of frequencies of occurrence of binary subsequences of length N bits was used as a feature space. File headers or any other contextual information were not used to construct the feature space. The presented algorithm has shown the accuracy of classification of the sequences specified in the work 0.98 and can be implemented in DLP systems to prevent the transmission of information in encrypted or compressed form. Tóm tắt—Hiện nay, số vụ rò rỉ thông tin bởi đối tượng vi phạm trong nội bộ gây ra ngày càng gia tăng. Một trong những kênh có thể dẫn đến rò rỉ thông tin là việc truyền dữ liệu ở dạng mã hóa hoặc nén, vì các hệ thống chống rò rỉ dữ liệu (DLP) hiện đại không thể phát hiện chữ ký và thông tin trong loại dữ liệu này. Nội dung bài báo trình bày thuật toán phân loại các chuỗi được hình thành bằng thuật toán mã hóa và nén. Một mảng tần số xuất hiện của các chuỗi con nhị phân có độ dài N bit được sử dụng làm không gian đặc trưng. Tiêu đề tệp hoặc bất kỳ thông tin ngữ cảnh nào khác không được sử dụng để xây dựng không gian đối tượng. Thuật toán được trình bày có độ chính xác trong việc phân loại các chuỗi đạt 0,98 và có thể được áp dụng trong các hệ thống DLP để ngăn chặn việc rò rỉ thông tin khi truyền thông tin ở dạng mã hóa hoặc nén.


Author(s):  
Damien Jamet ◽  
Pierre Popoli ◽  
Thomas Stoll

AbstractAutomatic sequences are not suitable sequences for cryptographic applications since both their subword complexity and their expansion complexity are small, and their correlation measure of order 2 is large. These sequences are highly predictable despite having a large maximum order complexity. However, recent results show that polynomial subsequences of automatic sequences, such as the Thue–Morse sequence, are better candidates for pseudorandom sequences. A natural generalization of automatic sequences are morphic sequences, given by a fixed point of a prolongeable morphism that is not necessarily uniform. In this paper we prove a lower bound for the maximum order complexity of the sum of digits function in Zeckendorf base which is an example of a morphic sequence. We also prove that the polynomial subsequences of this sequence keep large maximum order complexity, such as the Thue–Morse sequence.


2021 ◽  
Vol 11 (13) ◽  
pp. 5769
Author(s):  
Leonardo Palacios-Luengas ◽  
Ricardo Marcelín-Jiménez ◽  
Enrique Rodriguez-Colina ◽  
Michael Pascoe-Chalke ◽  
Omar Jiménez-Ramírez ◽  
...  

In cryptography, the pseudorandom number sequences must have random appearance to be used in secure information systems. The skew tent map (STM) is an attractive map to produce pseudorandom sequences due to its easy implementation and the absence of stability islands when it is in chaotic behavior. Using the STM and sine function, we propose and analyze a function composition to propose a pseudorandom number generator (PRNG). In the analysis of the function composition, we use the bifurcation diagram and the Lyapunov exponent to perform a behavioral comparison against the STM. We show that the proposed function composition is more sensitive to initial conditions than the STM, and then it is a better option than the STM for cryptography applications. For the proposed function we determine and avoid the chaos annulling traps. The proposed PRNG can be configured to generate pseudorandom numbers of 8, 16 or 32 bits and it can be implemented on microcontrollers with different architectures. We evaluate the pseudorandomness of the proposed PRNG using the NIST SP 800-22 and TestU01 suites. Additionally, to evaluate its quality, we apply tests such as correlation coefficient, key sensitivity, statistical and entropy analysis, key space, linear complexity, and speed. Finally, we performed a comparison with similar PRNGs that produce pseudorandom sequences considering numbers of 8 and 32 bits. The results show that the proposed PRNG maintains its security regardless of the selected configuration. The proposed PRNG has five important features: easy implementation, configurable to produce number with 8, 16 or 32 bits, high processing speed, high linear complexity, and wide key space. These features are necessary for cryptographic systems.


Sign in / Sign up

Export Citation Format

Share Document