respiratory central pattern generator
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 423 ◽  
pp. 373-388
Author(s):  
Xinyu Hao ◽  
Shuangming Yang ◽  
Bin Deng ◽  
Jiang Wang ◽  
Xile Wei ◽  
...  

2019 ◽  
Author(s):  
Jonathan E. Rubin ◽  
Jeffrey C. Smith

AbstractA central issue in the study of the neural generation of respiratory rhythms is the role of the intrinsic pacemaking capabilities that some respiratory neurons exhibit. The debate on this issue has occurred in parallel to investigations of interactions among respiratory network neurons and how these contribute to respiratory behavior. In this computational study, we demonstrate how these two issues are inextricably linked. We use simulations and dynamical systems analysis to show that once a conditional respiratory pacemaker, which can be tuned across oscillatory and non-oscillatory dynamic regimes in isolation, is embedded into a respiratory network, its dynamics become masked: the network exhibits similar dynamic properties regardless of the conditional pacemaker node’s tuning, and that node’s outputs are dominated by network influences. Furthermore, the outputs of the respiratory central pattern generator as a whole are invariant to these changes of dynamical properties, which ensures flexible and robust performance over a wide dynamic range.Author summaryBreathing movements in mammals are generated by brainstem respiratory central pattern generator (CPG) networks, which incorporate an excitatory oscillator located in the pre-Bötzinger Complex (preBötC) that can exhibit autorhythmic behavior. To understand how these autorhythmic properties impact CPG network dynamical performance, we performed computational studies with an established modeling framework to systematically analyze network behavior when the preBötC excitatory neurons’ intrinsic dynamics are tuned to operate in autorhythmic versus non-autorhythmic regimes. Both of these regimes enable rhythmic activity of the CPG network, and we show that the rhythm and its responses to various manipulations are preserved across the tunings of intrinsic properties of the preBötC component. Correspondingly, the emergence of behaviorally appropriate rhythmic patterns of network activity is maintained across preBötC regimes, accompanied by an expansion of the ranges of network output frequencies and amplitudes beyond those attainable with either preBötC regime alone. These results lead to the novel conclusion and concept that the dynamical operation of the CPG is functionally highly robust with respect to the rhythmogenic state of the preBötC excitatory circuits, which could represent a key property for preserved respiratory function across varying conditions and demands on network performance.


2018 ◽  
Vol 119 (2) ◽  
pp. 401-412 ◽  
Author(s):  
William H. Barnett ◽  
Sarah E. M. Jenkin ◽  
William K. Milsom ◽  
Julian F. R. Paton ◽  
Ana P. Abdala ◽  
...  

Coordination of respiratory pump and valve muscle activity is essential for normal breathing. A hallmark respiratory response to hypercapnia and hypoxia is the emergence of active exhalation, characterized by abdominal muscle pumping during the late one-third of expiration (late-E phase). Late-E abdominal activity during hypercapnia has been attributed to the activation of expiratory neurons located within the parafacial respiratory group (pFRG). However, the mechanisms that control emergence of active exhalation, and its silencing in restful breathing, are not completely understood. We hypothesized that inputs from the Kölliker-Fuse nucleus (KF) control the emergence of late-E activity during hypercapnia. Previously, we reported that reversible inhibition of the KF reduced postinspiratory (post-I) motor output to laryngeal adductor muscles and brought forward the onset of hypercapnia-induced late-E abdominal activity. Here we explored the contribution of the KF for late-E abdominal recruitment during hypercapnia by pharmacologically disinhibiting the KF in in situ decerebrate arterially perfused rat preparations. These data were combined with previous results and incorporated into a computational model of the respiratory central pattern generator. Disinhibition of the KF through local parenchymal microinjections of gabazine (GABAA receptor antagonist) prolonged vagal post-I activity and inhibited late-E abdominal output during hypercapnia. In silico, we reproduced this behavior and predicted a mechanism in which the KF provides excitatory drive to post-I inhibitory neurons, which in turn inhibit late-E neurons of the pFRG. Although the exact mechanism proposed by the model requires testing, our data confirm that the KF modulates the formation of late-E abdominal activity during hypercapnia. NEW & NOTEWORTHY The pons is essential for the formation of the three-phase respiratory pattern, controlling the inspiratory-expiratory phase transition. We provide functional evidence of a novel role for the Kölliker-Fuse nucleus (KF) controlling the emergence of abdominal expiratory bursts during active expiration. A computational model of the respiratory central pattern generator predicts a possible mechanism by which the KF interacts indirectly with the parafacial respiratory group and exerts an inhibitory effect on the expiratory conditional oscillator.


Neuroenology ◽  
2016 ◽  
pp. 30-37
Author(s):  
Gordon M. Shepherd

Respiration is critical to producing both orthonasal and retronasal smell. We explain how the diaphragm moves up and down, controlled by the nerves from the respiratory central pattern generator. We look inside the nose to see how the sniff produces complex airflows when we are sampling the wine aroma in the glass by orthonasal smell.


Sign in / Sign up

Export Citation Format

Share Document