respiratory neurons
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 13)

H-INDEX

54
(FIVE YEARS 3)

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Prajkta Kallurkar ◽  
Maria Cristina Picardo ◽  
Yae Sugimura ◽  
Gregory Conradi Smith ◽  
Margaret Saha ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 2019
Author(s):  
Swen Hülsmann ◽  
Liya Hagos ◽  
Volker Eulenburg ◽  
Johannes Hirrlinger

The role of inhibitory neurons in the respiratory network is a matter of ongoing debate. Conflicting and contradicting results are manifold and the question whether inhibitory neurons are essential for the generation of the respiratory rhythm as such is controversial. Inhibitory neurons are required in pulmonary reflexes for adapting the activity of the central respiratory network to the status of the lung and it is hypothesized that glycinergic neurons mediate the inspiratory off-switch. Over the years, optogenetic tools have been developed that allow for cell-specific activation of subsets of neurons in vitro and in vivo. In this study, we aimed to identify the effect of activation of inhibitory neurons in vivo. Here, we used a conditional transgenic mouse line that expresses Channelrhodopsin 2 in inhibitory neurons. A 200 µm multimode optical fiber ferrule was implanted in adult mice using stereotaxic surgery, allowing us to stimulate inhibitory, respiratory neurons within the core excitatory network in the preBötzinger complex of the ventrolateral medulla. We show that, in anesthetized mice, activation of inhibitory neurons by blue light (470 nm) continuously or with stimulation frequencies above 10 Hz results in a significant reduction of the respiratory rate, in some cases leading to complete cessation of breathing. However, a lower stimulation frequency (4–5 Hz) could induce a significant increase in the respiratory rate. This phenomenon can be explained by the resetting of the respiratory cycle, since stimulation during inspiration shortened the associated breath and thereby increased the respiratory rate, while stimulation during the expiratory interval reduced the respiratory rate. Taken together, these results support the concept that activation of inhibitory neurons mediates phase-switching by inhibiting excitatory rhythmogenic neurons in the preBötzinger complex.


Author(s):  
Josué de Jesús Juárez-Vidales ◽  
Jesús Esteban Pérez-Ortega ◽  
Jonathan Julio Ismael Lorea-Hernández ◽  
Felipe A. Méndez-Salcido ◽  
Fernando Pena-Ortega

The preBötzinger complex (preBötC), located within the ventral respiratory column, produces inspiratory bursts in varying degrees of synchronization/amplitude. This wide range of population burst patterns reflects the flexibility of the preBötC neurons, which is expressed in variations in the onset/offset times of their activations and their activity during the population bursts, with respiratory neurons exhibiting a large cycle-to-cycle timing jitter both at the population activity onset and at the population activity peak; suggesting that respiratory neurons are stochastically activated before and during the inspiratory bursts. However, it is still unknown whether this stochasticity is maintained while evaluating the coactivity of respiratory neuronal ensembles. Moreover, the preBötC topology also remains unknown. Here, by simultaneously recording tens of preBötC neurons and using coactivation analysis during the inspiratory periods, we found that the preBötC has a scale-free configuration (mixture of not many highly connected nodes -hubs- with abundant poorly connected elements) exhibiting the rich-club phenomenon (hubs more likely interconnected with each other). PreBötC neurons also produce multineuronal activity patterns (MAPs) that are highly stable and change during the hypoxia-induced reconfiguration. Moreover, preBötC contains a coactivating core network shared by all its MAPs. Finally, we found a distinctive pattern of sequential coactivation of core network neurons at the beginning of the inspiratory periods, indicating that, when evaluated at the multicellular level, the coactivation of respiratory neurons seems not to be stochastic.


2020 ◽  
Vol 598 (22) ◽  
pp. 5271-5293
Author(s):  
Bárbara Falquetto ◽  
Karina Thieme ◽  
Marília B. Malta ◽  
Karina C. e Rocha ◽  
Marina Tuppy ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Clément Menuet ◽  
Angela A Connelly ◽  
Jaspreet K Bassi ◽  
Mariana R Melo ◽  
Sheng Le ◽  
...  

Heart rate and blood pressure oscillate in phase with respiratory activity. A component of these oscillations is generated centrally, with respiratory neurons entraining the activity of pre-sympathetic and parasympathetic cardiovascular neurons. Using a combination of optogenetic inhibition and excitation in vivo and in situ in rats, as well as neuronal tracing, we demonstrate that preBötzinger Complex (preBötC) neurons, which form the kernel for inspiratory rhythm generation, directly modulate cardiovascular activity. Specifically, inhibitory preBötC neurons modulate cardiac parasympathetic neuron activity whilst excitatory preBötC neurons modulate sympathetic vasomotor neuron activity, generating heart rate and blood pressure oscillations in phase with respiration. Our data reveal yet more functions entrained to the activity of the preBötC, with a role in generating cardiorespiratory oscillations. The findings have implications for cardiovascular pathologies, such as hypertension and heart failure, where respiratory entrainment of heart rate is diminished and respiratory entrainment of blood pressure exaggerated.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kamal Abu-Hassan ◽  
Joseph D. Taylor ◽  
Paul G. Morris ◽  
Elisa Donati ◽  
Zuner A. Bortolotto ◽  
...  

AbstractBioelectronic medicine is driving the need for neuromorphic microcircuits that integrate raw nervous stimuli and respond identically to biological neurons. However, designing such circuits remains a challenge. Here we estimate the parameters of highly nonlinear conductance models and derive the ab initio equations of intracellular currents and membrane voltages embodied in analog solid-state electronics. By configuring individual ion channels of solid-state neurons with parameters estimated from large-scale assimilation of electrophysiological recordings, we successfully transfer the complete dynamics of hippocampal and respiratory neurons in silico. The solid-state neurons are found to respond nearly identically to biological neurons under stimulation by a wide range of current injection protocols. The optimization of nonlinear models demonstrates a powerful method for programming analog electronic circuits. This approach offers a route for repairing diseased biocircuits and emulating their function with biomedical implants that can adapt to biofeedback.


2019 ◽  
Vol 265 ◽  
pp. 127-140 ◽  
Author(s):  
Edward J. Zuperku ◽  
Astrid G. Stucke ◽  
John G. Krolikowski ◽  
Jack Tomlinson ◽  
Francis A. Hopp ◽  
...  

Author(s):  
Armand L. Bianchi ◽  
Rosario Pásaro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document