randomized rounding
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Bruno Ordozgoiti ◽  
Ananth Mahadevan ◽  
Antonis Matakos ◽  
Aristides Gionis

AbstractWhen searching for information in a data collection, we are often interested not only in finding relevant items, but also in assembling a diverse set, so as to explore different concepts that are present in the data. This problem has been researched extensively. However, finding a set of items with minimal pairwise similarities can be computationally challenging, and most existing works striving for quality guarantees assume that item relatedness is measured by a distance function. Given the widespread use of similarity functions in many domains, we believe this to be an important gap in the literature. In this paper we study the problem of finding a diverse set of items, when item relatedness is measured by a similarity function. We formulate the diversification task using a flexible, broadly applicable minimization objective, consisting of the sum of pairwise similarities of the selected items and a relevance penalty term. To find good solutions we adopt a randomized rounding strategy, which is challenging to analyze because of the cardinality constraint present in our formulation. Even though this obstacle can be overcome using dependent rounding, we show that it is possible to obtain provably good solutions using an independent approach, which is faster, simpler to implement and completely parallelizable. Our analysis relies on a novel bound for the ratio of Poisson-Binomial densities, which is of independent interest and has potential implications for other combinatorial-optimization problems. We leverage this result to design an efficient randomized algorithm that provides a lower-order additive approximation guarantee. We validate our method using several benchmark datasets, and show that it consistently outperforms the greedy approaches that are commonly used in the literature.


Author(s):  
François Lamothe ◽  
Emmanuel Rachelson ◽  
Alain Haït ◽  
Cedric Baudoin ◽  
Jean-Baptiste Dupé

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 479
Author(s):  
Daniel J. Egger ◽  
Jakub Mareček ◽  
Stefan Woerner

There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.


Author(s):  
Noémie Périvier ◽  
Chamsi Hssaine ◽  
Samitha Samaranayake ◽  
Siddhartha Banerjee

We study real-time routing policies in smart transit systems, where the platform has a combination of cars and high-capacity vehicles (e.g., buses or shuttles) and seeks to serve a set of incoming trip requests. The platform can use its fleet of cars as a feeder to connect passengers to its high-capacity fleet, which operates on fixed routes. Our goal is to find the optimal set of (bus) routes and corresponding frequencies to maximize the social welfare of the system in a given time window. This generalizes the Line Planning Problem, a widely studied topic in the transportation literature, for which existing solutions are either heuristic (with no performance guarantees), or require extensive computation time (and hence are impractical for real-time use). To this end, we develop a 1-1/e-ε approximation algorithm for the Real-Time Line Planning Problem, using ideas from randomized rounding and the Generalized Assignment Problem. Our guarantee holds under two assumptions: (i) no inter-bus transfers and (ii) access to a pre-specified set of feasible bus lines. We moreover show that these two assumptions are crucial by proving that, if either assumption is relaxed, the łineplanningproblem does not admit any constant-factor approximation. Finally, we demonstrate the practicality of our algorithm via numerical experiments on real-world and synthetic datasets, in which we show that, given a fixed time budget, our algorithm outperforms Integer Linear Programming-based exact methods.


Sign in / Sign up

Export Citation Format

Share Document