wifi fingerprint
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8228
Author(s):  
Yunbing Hu ◽  
Ao Peng ◽  
Biyu Tang ◽  
Hongying Xu

The inertial navigation system has high short-term positioning accuracy but features cumulative error. Although no cumulative error occurs in WiFi fingerprint localization, mismatching is common. A popular technique thus involves integrating an inertial navigation system with WiFi fingerprint matching. The particle filter uses dead reckoning as the state transfer equation and the difference between inertial navigation and WiFi fingerprint matching as the observation equation. Floor map information is introduced to detect whether particles cross the wall; if so, the weight is set to zero. For particles that do not cross the wall, considering the distance between current and historical particles, an adaptive particle filter is proposed. The adaptive factor increases the weight of highly trusted particles and reduces the weight of less trusted particles. This paper also proposes a multidimensional Euclidean distance algorithm to reduce WiFi fingerprint mismatching. Experimental results indicate that the proposed algorithm achieves high positioning accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1114 ◽  
Author(s):  
Feng Qin ◽  
Tao Zuo ◽  
Xing Wang

WiFi is widely used for indoor positioning because of its advantages such as long transmission distance and ease of use indoors. To improve the accuracy and robustness of indoor WiFi fingerprint localization technology, this paper proposes a positioning system CCPos (CADE-CNN Positioning), which is based on a convolutional denoising autoencoder (CDAE) and a convolutional neural network (CNN). In the offline stage, this system applies the K-means algorithm to extract the validation set from the all-training set. In the online stage, the RSSI is first denoised and key features are extracted by the CDAE. Then the location estimation is output by the CNN. In this paper, the Alcala Tutorial 2017 dataset and UJIIndoorLoc are adopted to verify the performance of the CCpos system. The experimental results show that our system has excellent noise immunity and generalization performance. The mean positioning errors on the Alcala Tutorial 2017 dataset and the UJIIndoorLoc are 1.05 m and 12.4 m, respectively.


Author(s):  
Baoqi Huang ◽  
Runze Yang ◽  
Bing Jia ◽  
Wuyungerile Li ◽  
Guoqiang Mao

Sign in / Sign up

Export Citation Format

Share Document