neoproterozoic era
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

Nature ◽  
2021 ◽  
Author(s):  
Elizabeth C. Turner

AbstractMolecular phylogeny indicates that metazoans (animals) emerged early in the Neoproterozoic era1, but physical evidence is lacking. The search for animal fossils from the Proterozoic eon is hampered by uncertainty about what physical characteristics to expect. Sponges are the most basic known animal type2,3; it is possible that body fossils of hitherto-undiscovered Proterozoic metazoans might resemble aspect(s) of Phanerozoic fossil sponges. Vermiform microstructure4,5, a complex petrographic feature in Phanerozoic reefal and microbial carbonates, is now known to be the body fossil of nonspicular keratosan demosponges6–10. This Article presents petrographically identical vermiform microstructure from approximately 890-million-year-old reefs. The millimetric-to-centimetric vermiform-microstructured organism lived only on, in and immediately beside reefs built by calcifying cyanobacteria (photosynthesizers), and occupied microniches in which these calcimicrobes could not live. If vermiform microstructure is in fact the fossilized tissue of keratose sponges, the material described here would represent the oldest body-fossil evidence of animals known to date, and would provide the first physical evidence that animals emerged before the Neoproterozoic oxygenation event and survived through the glacial episodes of the Cryogenian period.


2020 ◽  
Vol 117 (5) ◽  
pp. 2551-2559 ◽  
Author(s):  
Andrea Del Cortona ◽  
Christopher J. Jackson ◽  
François Bucchini ◽  
Michiel Van Bel ◽  
Sofie D’hondt ◽  
...  

The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.


2019 ◽  
Author(s):  
Andrea Del Cortona ◽  
Christopher J. Jackson ◽  
François Bucchini ◽  
Michiel Van Bel ◽  
Sofie D’hondt ◽  
...  

AbstractThe Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focusses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations, with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that the unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified following recolonization of benthic environments that became increasingly available as sea ice retreated. An increased supply of nutrients and biotic interactions such as grazing pressure has likely triggered the independent evolution of macroscopic growth via different strategies, including both true multicellularity, and multiple types of giant celled forms.Significance StatementGreen seaweeds are important primary producers along coastlines worldwide, and likely played a key role in the evolution of animals. To understand their origin and diversification, we resolve key relationships among extant green algae using a phylotranscriptomic approach. We calibrate our tree using available fossil data, to reconstruct important evolutionary events such as transitions to benthic environments, and evolution of macroscopic growth. We estimate green seaweeds to have originated in the late Tonian/Cryogenian Period, followed by a marked Ordovician diversification of macroscopic forms. This ancient proliferation of green seaweeds likely modified shallow marine ecosystems, which set off an evolutionary arms race between ever larger seaweeds and grazers.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Adityarup Chakravorty

In a new study, researchers make the case that large-scale glaciation during parts of the Neoproterozoic era led to extensive erosion of Earth’s crust.


2018 ◽  
Vol 2 (2) ◽  
pp. 289-298 ◽  
Author(s):  
Daniel B. Mills ◽  
Warren R. Francis ◽  
Donald E. Canfield

The Neoproterozoic Era (1000–541 million years ago, Ma) was characterized by dramatic environmental and evolutionary change, including at least two episodes of extensive, low-latitude glaciation, potential changes in the redox structure of the global ocean, and the origin and diversification of animal life. How these different events related to one another remains an active area of research, particularly how these environmental changes influenced, and were influenced by, the earliest evolution of animals. Animal multicellularity is estimated to have evolved in the Tonian Period (1000–720 Ma) and represents one of at least six independent acquisitions of complex multicellularity, characterized by cellular differentiation, three-dimensional body plans, and active nutrient transport. Compared with the other instances of complex multicellularity, animals represent the only clade to have evolved from wall-less, phagotrophic flagellates, which likely placed unique cytological and trophic constraints on the evolution of animal multicellularity. Here, we compare recent molecular clock estimates with compilations of the chromium isotope, micropaleontological, and organic biomarker records, suggesting that, as of now, the origin of animals was not obviously correlated to any environmental–ecological change in the Tonian Period. This lack of correlation is consistent with the idea that the evolution of animal multicellularity was primarily dictated by internal, developmental constraints and occurred independently of the known environmental–ecological changes that characterized the Neoproterozoic Era.


Sedimentology ◽  
2016 ◽  
Vol 63 (2) ◽  
pp. 253-306 ◽  
Author(s):  
Guy H. Spence ◽  
Daniel P. Le Heron ◽  
Ian J. Fairchild

2014 ◽  
Vol 7 (4) ◽  
pp. 257-265 ◽  
Author(s):  
Timothy M. Lenton ◽  
Richard A. Boyle ◽  
Simon W. Poulton ◽  
Graham A. Shields-Zhou ◽  
Nicholas J. Butterfield
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document