life cycle initiative
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 26 (9) ◽  
pp. 1900-1905 ◽  
Author(s):  
Sonia Valdivia ◽  
Jana Gerta Backes ◽  
Marzia Traverso ◽  
Guido Sonnemann ◽  
Stefano Cucurachi ◽  
...  

Abstract Purpose and context This paper aims to establish principles for the increased application and use of life cycle sustainability assessment (LCSA). Sustainable development (SD) encompassing resilient economies and social stability of the global system is growingly important for decision-makers from business and governments. The “17 SDGs” emerge as a high-level shared blueprint for peace, abundance, and prosperity for people and the planet, and “sustainability” for supporting improvements of products and organizations. A “sustainability” interpretation—successful in aligning stakeholders’ understanding—subdivides the impacts according to a triple bottom line or three pillars: economic, social, and environmental impacts. These context and urgent needs inspired the LCSA framework. This entails a sustainability assessment of products and organizations in accordance with the three pillars, while adopting a life cycle perspective. Methods The Life Cycle Initiative promotes since 2011 a pragmatic LCSA framework based on the three techniques: LCSA = environmental life cycle assessment (LCA) + life cycle costing (LCC) + social life cycle assessment (S-LCA). This is the focus of the paper, while acknowledging previous developments. Identified and reviewed literature shows challenges of addressing the three pillars in the LCSA framework implementation like considering only two pillars; not being fully aligned with ISO 14040; lacking interconnectedness among the three pillars; not having clear criteria for results’ weighting nor clear results’ interpretation; and not following cause-effect chains and mechanisms leading to an endpoint. Agreement building among LCSA experts and reviewing processes strengthened the consensus on this paper. Broad support and outreach are ensured by publishing this as position paper. Results For harmonizing practical LCSA applications, easing interpretation, and increasing usefulness, consensed ten LCSA principles (10P) are established: understanding the areas of protection, alignment with ISO 14040, completeness, stakeholders’ and product utility considerations, materiality of system boundaries, transparency, consistency, explicit trade-offs’ communication, and caution when compensating impacts. Examples were provided based on a fictional plastic water bottle Conclusions In spite of increasing needs for and interest in SD and sustainability supporting tools, LCSA is at an early application stage of application. The 10P aim to promote more and better LCSA applications by ensuring alignment with ISO 14040, completeness and clear interpretation of integrated results, among others. For consolidating its use, however, more consensus-building is needed (e.g., on value-laden ethical aspects of LCSA, interdependencies and interconnectedness among the three dimensions, and harmonization and integration of the three techniques) and technical and policy recommendations for application.


2021 ◽  
Author(s):  
Victoria Tokareva ◽  
Igor Bychkov ◽  
Andrey Demichev ◽  
Julia Dubenskaya ◽  
Oleg Fedorov ◽  
...  

Author(s):  
Peter Fantke ◽  
Weihsueh A. Chiu ◽  
Lesa Aylward ◽  
Richard Judson ◽  
Lei Huang ◽  
...  

Abstract Purpose Reducing chemical pressure on human and environmental health is an integral part of the global sustainability agenda. Guidelines for deriving globally applicable, life cycle–based indicators are required to consistently quantify toxicity impacts from chemical emissions as well as from chemicals in consumer products. In response, we elaborate the methodological framework and present recommendations for advancing near-field/far-field exposure and toxicity characterization, and for implementing these recommendations into the scientific consensus model USEtox. Methods An expert taskforce was convened by the Life Cycle Initiative hosted by UN Environment to expand existing guidance for evaluating human toxicity impacts from exposure to chemical substances. This taskforce evaluated scientific advances since the original release of USEtox and identified two major aspects that required refinement, namely integrating near-field and far-field exposure, and improving human dose-response modeling. Dedicated efforts have led to a set of recommendations to address these aspects in an update of USEtox, while ensuring consistency with the boundary conditions for characterizing life cycle toxicity impacts and being aligned with recommendations from agencies that regulate chemical exposure. The proposed updated USEtox framework was tested in an illustrative rice production and consumption case study. Results and discussion On the exposure side, a matrix system is proposed and recommended to integrate far-field exposure from environmental emissions with near-field exposure from chemicals in various consumer product types. Consumer exposure is addressed via sub-models for each product type to account for product type-specific characteristics and exposure settings. Case study results illustrate that product use–related exposure dominates overall life cycle exposure. On the effect side, a probabilistic dose-response approach combined with a decision tree for identifying reliable points of departure is proposed for non-cancer effects, following recent guidance from the World Health Organization. This approach allows for explicitly considering both uncertainty and human variability in toxicity effect factors. Factors reflecting disease severity are proposed to distinguish cancer from non-cancer effects and within the latter to discriminate reproductive/developmental and other non-cancer effects. All proposed aspects have been consistently implemented into the original USEtox framework. Conclusions The recommended methodological advancements address several key limitations in earlier approaches. Next steps are to test the new characterization framework in additional case studies and to close remaining research gaps. Our framework is applicable for evaluating chemical emissions and product-related exposure in life cycle assessment, chemical alternatives assessment and chemical substitution, consumer exposure and risk screening, and high-throughput chemical prioritization.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Bradley Ridoutt ◽  
Danielle Baird ◽  
Kimberley Anastasiou ◽  
Gilly Hendrie

AbstractThe food system is responsible for around 70% of global freshwater use. Pathways toward responsible consumption and production of food are therefore critically needed to ensure the planetary boundary for freshwater use is not transgressed. There is also an uneven spatial distribution of freshwater resources and human water demands, meaning that water-scarcity is acute in some regions but a lesser concern in others. Quantifying the water-scarcity impacts associated with food consumption is therefore a complex challenge due to the diversity of individual eating patterns, the very large number of individual food products available, and the many different regions where food is grown or processed. To our knowledge, this is the first study to calculate water footprints for a large number of self-selected diets. Life cycle assessment was used to model the water-scarcity footprints of 9,341 individual Australian adult diets obtained through 24-hour recall as part of the most recent Australian Health Survey. Three water-scarcity indicators were used, including the AWARE model recently developed by a project group working under the auspices of the United Nations Environment Programme (UNEP) / Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative (www.lifecycleinitiative.org). In addition, a diet quality score was calculated for each of these diets. Our objective was to identify pathways toward healthier diets with lower water-scarcity impacts. Dietary water-scarcity footprints averaged 362 L-eq person-1 day-1 and were highly variable (sd. 218 L-eq person-1 day-1), reflecting the diversity of eating habits in the general community. The largest water-scarcity impacts were related to the excessive consumption of discretionary foods (alcoholic beverages, processed meat products, dairy desserts, cream, butter, muesli bars, confectionery, chocolate, biscuits, cakes, waffles, fried potato and extruded snacks, etc.). The potential to reduce dietary water-scarcity impacts is large, although the opportunity to intervene through amended dietary guidelines is not straightforward due to the large variations in water-scarcity footprint intensity between individual foods within a food group, and the inability of consumers to identify lower water-scarcity footprint products without food labeling. Reductions in the water-scarcity footprint of Australian food consumption are likely best achieved through reductions in food waste, technological change to improve water-use efficiency in food production, as well as the implementation of product reformulation and procurement strategies in the food manufacturing sector to avoid higher water-scarcity footprint intensity ingredients.


2019 ◽  
Author(s):  
Andreas Haungs ◽  
Igor Bychkov ◽  
Julia Dubenskaya ◽  
Oleg Fedorov ◽  
Andreas Heiss ◽  
...  

Data ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 56 ◽  
Author(s):  
Igor Bychkov ◽  
Andrey Demichev ◽  
Julia Dubenskaya ◽  
Oleg Fedorov ◽  
Andreas Haungs ◽  
...  

Modern large-scale astroparticle setups measure high-energy particles, gamma rays, neutrinos, radio waves, and the recently discovered gravitational waves. Ongoing and future experiments are located worldwide. The data acquired have different formats, storage concepts, and publication policies. Such differences are a crucial point in the era of Big Data and of multi-messenger analysis in astroparticle physics. We propose an open science web platform called ASTROPARTICLE.ONLINE which enables us to publish, store, search, select, and analyze astroparticle data. In the first stage of the project, the following components of a full data life cycle concept are under development: describing, storing, and reusing astroparticle data; software to perform multi-messenger analysis using deep learning; and outreach for students, post-graduate students, and others who are interested in astroparticle physics. Here we describe the concepts of the web platform and the first obtained results, including the meta data structure for astroparticle data, data analysis by using convolution neural networks, description of the binary data, and the outreach platform for those interested in astroparticle physics. The KASCADE-Grande and TAIGA cosmic-ray experiments were chosen as pilot examples.


Author(s):  
Igor Bychkov ◽  
Andrey Demichev ◽  
Julia Dubenskaya ◽  
Oleg Fedorov ◽  
Andreas Haungs ◽  
...  

Modern experimental astroparticle physics features large-scale setups measuring different messengers, namely high-energy particles generated by cosmic accelerators (e.g. supernova remnants, active galactic nuclei, etc): cosmic and gamma rays, neutrinos and recently discovered gravitational waves. Ongoing and future experiments are distributed over the Earth including ground, underground/underwater setups as well as balloon payloads and spacecrafts. The data acquired by these experiments have different formats, storage concepts and publication policies. Such differences are a crucial issue in the era of big data and of multi-messenger analysis strategies in astroparticle physics. We propose a service ASTROPARTICLE.ONLINE in the frame of which we develop an open science system which enables to publish, store, search, select and analyse astroparticle physics data. The cosmic-ray experiments KASCADE-Grande and TAIGA were chosen as pilot experiments to be included in this framework. In the first step of our initiative we will develop and test the following components of the full data life cycle concept: (i) describing, storing and reusing of astroparticle data; (ii) software for performing multi-experiment and multi-messenger analyses like deep-learning methods; (iii) outreach including example applications and tutorial for students and scientists outside the specific research field. In the present paper we describe the concepts of our initiative, and in particular the plans toward a common, federated astroparticle data storage.


2017 ◽  
Vol 161 ◽  
pp. 957-967 ◽  
Author(s):  
Francesca Verones ◽  
Jane Bare ◽  
Cécile Bulle ◽  
Rolf Frischknecht ◽  
Michael Hauschild ◽  
...  

2016 ◽  
Vol 112 ◽  
pp. 4283-4287 ◽  
Author(s):  
Ricardo F.M. Teixeira ◽  
Danielle Maia de Souza ◽  
Michael P. Curran ◽  
Assumpció Antón ◽  
Ottar Michelsen ◽  
...  

2015 ◽  
Vol 20 (8) ◽  
pp. 1045-1047 ◽  
Author(s):  
Julia Martínez-Blanco ◽  
Atsushi Inaba ◽  
Ana Quiros ◽  
Sonia Valdivia ◽  
Llorenç Milà-i-Canals ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document