particle correlations and fluctuations
Recently Published Documents


TOTAL DOCUMENTS

1
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 1)

2020 ◽  
Vol 29 (02) ◽  
pp. 2030001 ◽  
Author(s):  
Peter Senger

The Compressed Baryonic Matter (CBM) experiment will investigate high-energy heavy-ion collisions at the international Facility for Antiproton and Ion Research (FAIR), which is under construction in Darmstadt, Germany. The CBM research program is focused on the exploration of QCD matter at neutron star core densities, such as study of the equation-of-state and the search for phase transitions. Key experimental observables include (multi-) strange (anti-) particles, electron-positron pairs and dimuons, particle correlations and fluctuations, and hyper-nuclei. In order to measure these diagnostic probes multi-differentially with unprecedented precision, the CBM detector and data acquisition systems are designed to run at reaction rates up to 10 MHz. This requires the development of fast and radiation hard detectors and readout electronics for track reconstruction, electron and muon identification, time-of-flight (TOF) determination and event characterization. The data are read-out by ultra-fast, radiation-tolerant, and free-streaming front-end electronics, and then transferred via radiation-hard data aggregation units and high-speed optical connections to a high-performance computing center. A fast and highly parallelized software will perform online track reconstruction, particle identification and event analysis. The components of the CBM experimental setup will be discussed and results of physics performance studies will be presented.


Sign in / Sign up

Export Citation Format

Share Document