asymmetric multicore
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1488
Author(s):  
Basharat Mahmood ◽  
Naveed Ahmad ◽  
Majid Iqbal Khan ◽  
Adnan Akhunzada

The use of real-time systems is growing at an increasing rate. This raises the power efficiency as the main challenge for system designers. Power asymmetric multicore processors provide a power-efficient platform for building complex real-time systems. The utilization of this efficient platform can be further enhanced by adopting proficient scheduling policies. Unfortunately, the research on real-time scheduling of power asymmetric multicore processors is in its infancy. In this research, we have addressed this problem and added new results. We have proposed a dynamic-priority semi-partitioned algorithm named: Earliest-Deadline First with C=D Task Splitting (EDFwC=D-TS) for scheduling real-time applications on power asymmetric multicore processors. EDFwC=D-TS outclasses its counterparts in terms of system utilization. The simulation results show that EDFwC=D-TS schedules up to 67% more tasks with heavy workloads. Furthermore, it improves the processor utilization up to 11% and on average uses 14% less cores to schedule the given workload.



2021 ◽  
Vol 32 (5) ◽  
pp. 1224-1237
Author(s):  
Teng Yu ◽  
Runxin Zhong ◽  
Vladimir Janjic ◽  
Pavlos Petoumenos ◽  
Jidong Zhai ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Josu Amorebieta ◽  
Angel Ortega-Gomez ◽  
Gaizka Durana ◽  
Rubén Fernández ◽  
Enrique Antonio-Lopez ◽  
...  

AbstractWe propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).



Author(s):  
Josu Amorebieta ◽  
Angel Ortega-Gomez ◽  
Gaizka Durana ◽  
Enrique Antonio-Lopez ◽  
Axel Schülzgen ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document