montane biodiversity
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Wei Liu ◽  
Haigen Xu ◽  
Mingchang Cao ◽  
Xiufen Li ◽  
Dandan Yu ◽  
...  

The biodiversity in montane ecosystems is high but is threatened by rapid environmental change. Urbanization and other anthropogenic activities in the mountains surrounding cities can affect changes in land use and habitat heterogeneity. Moreover, patterns of habitat heterogeneity are closely related to elevation and have a major effect on montane biodiversity. The aim of this study was to analyze the effects of habitat heterogeneity on the vertical distribution pattern of bird diversity by characterizing the structure of the bird community, biodiversity, and landscape factors at different altitudes. Continuous monitoring of the breeding birds at Mount Tai from 2016 to 2019 revealed that forest reduced the diversity and abundance of birds and favored montane birds. Habitat composition varied at different altitudes. In the high-mountain belt and the middle-mountain belt, the habitat was primarily composed of forest. In contrast, artificial habitat was more common in the low-mountain belt. Bird abundance, species richness, and the Shannon-Wiener index decreased as the altitude increased, and the structure of the bird community significantly differed in the different belts. Some rare species tended to only occupy specific belts. Road density, number of habitat patches, patch density, and the percentage of forest significantly affected bird diversity. The effect of patch density was higher compared with other landscape factors. The “habitat amount hypothesis” was more suitable for explaining the elevational distribution pattern of bird diversity at Mount Tai. Sufficient habitat and more patches in the low-mountain belt supported higher bird diversity. The middle-mountain belt and high-mountain belt showed contrasting patterns. Our results highlight the effects of ongoing urbanization and human activities on montane biodiversity and emphasize the need for artificial habitats in the mountains surrounding cities to be managed.


Plant Ecology ◽  
2021 ◽  
Vol 222 (4) ◽  
pp. 421-432
Author(s):  
Manuel R. Popp ◽  
Jesse M. Kalwij

AbstractMontane ecosystems are more prone to invasions by exotic plant species than previously thought. Besides abiotic factors, such as climate and soil properties, plant-plant interactions within communities are likely to affect the performance of potential invaders in their exotic range. The biotic resistance hypothesis predicts that high indigenous species richness hampers plant invasions. The biotic acceptance hypothesis, on the other hand, predicts a positive relationship between indigenous and exotic species richness. We tested these two hypotheses using observational data along an elevational gradient in a southern African biodiversity hotspot. Species composition data of indigenous and exotic plants were recorded in 20 road verge plots along a gradient of 1775–2775 m a.s.l. in the Drakensberg, South Africa. Plots were 2 × 50 m in size and positioned at 50 m elevational intervals. We found a negative correlation between indigenous and exotic richness for locations with poorly developed mineral soils, suggesting biotic resistance through competitive interactions. A strong positive correlation for plots with very shallow soils at high elevations indicated a lack of biotic resistance and the possibility of facilitating interactions in harsher environments. These results suggest that biotic resistance is restricted to the lower and mid elevations while biotic acceptance prevails in presence of severe abiotic stress, potentially increasing the risk of plant invasions into montane biodiversity hotspots.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3077 ◽  
Author(s):  
Paul M. Oliver ◽  
Amy Iannella ◽  
Stephen J. Richards ◽  
Michael S.Y. Lee

AimsMountain ranges in the tropics are characterised by high levels of localised endemism, often-aberrant evolutionary trajectories, and some of the world’s most diverse regional biotas. Here we investigate the evolution of montane endemism, ecology and body size in a clade of direct-developing frogs (Choerophryne,Microhylidae) from New Guinea.MethodsPhylogenetic relationships were estimated from a mitochondrial molecular dataset using Bayesian and maximum likelihood approaches. Ancestral state reconstruction was used to infer the evolution of elevational distribution, ecology (indexed by male calling height), and body size, and phylogenetically corrected regression was employed to examine the relationships between these three traits.ResultsWe obtained strong support for a monophyletic lineage comprising the majority of taxa sampled. Within this clade we identified one subclade that appears to have diversified primarily in montane habitats of the Central Cordillera (>1,000 m a.s.l.), with subsequent dispersal to isolated North Papuan Mountains. A second subclade (characterised by moderately to very elongated snouts) appears to have diversified primarily in hill forests (<1,000 m a.s.l.), with inferred independent upwards colonisations of isolated montane habitats, especially in isolated North Papuan Mountains. We found no clear relationship between extremely small body size (adult SVL less than 15 mm) and elevation, but a stronger relationship with ecology—smaller species tend to be more terrestrial.ConclusionsOrogeny and climatic oscillations have interacted to generate high montane biodiversity in New Guinea via both localised diversification within montane habitats (centric endemism) and periodic dispersal across lowland regions (eccentric endemism). The correlation between extreme miniaturisation and terrestrial habits reflects a general trend in frogs, suggesting that ecological or physiological constraints limit niche usage by miniaturised frogs, even in extremely wet environments such as tropical mountains.


2017 ◽  
Author(s):  
Paul M Oliver ◽  
Amy Iannella ◽  
Stephen J Richards ◽  
Michael S.Y Lee

Aims. Mountain ranges in the tropics are characterised by high levels of localised endemism, often-aberrant evolutionary trajectories, and some of the world’s most diverse regional biotas. Here we investigate the evolution of montane endemism, ecology and body size in a clade of direct-developing frogs (Choerophryne, Microhylidae) from New Guinea. Methods. Phylogenetic relationships were estimated from a mitochondrial molecular dataset using Bayesian and maximum likelihood approaches. Ancestral state reconstruction was used to infer the evolution of elevational distribution, ecology (indexed by male calling height), and body size, and phylogenetically corrected regression was employed to examine the relationships between these three traits. Results. We obtained strong support for a monophyletic lineage comprising the majority of taxa sampled. Within this clade we identified one subclade that appears to have diversified primarily in montane habitats of the Central Cordillera (> 1000 m. a.s.l), with subsequent dispersal to isolated North Papuan Mountains. A second subclade (characterised by moderately to very elongated snouts) appears to have diversified primarily in hill forests (< 1000 m a.s.l.), with inferred independent upwards colonisations of isolated montane habitats, especially in isolated North Papuan Mountains. We found no clear relationship between extremely small body size (adult SVL less than 15mm) and elevation, but a stronger relationship with ecology – smaller species tend to be more terrestrial. Conclusions. Orogeny and climatic oscillations have interacted to generate high montane biodiversity in New Guinea via both localised diversification within montane habitats (centric endemism) and periodic dispersal across lowland regions (eccentric endemism). The correlation between extreme miniaturisation and terrestrial habits reflects a general trend in frogs, suggesting that ecological or physiological constraints limit niche usage by miniaturised frogs, even in extremely wet environments such as tropical mountains.


2017 ◽  
Author(s):  
Paul M Oliver ◽  
Amy Iannella ◽  
Stephen J Richards ◽  
Michael S.Y Lee

Aims. Mountain ranges in the tropics are characterised by high levels of localised endemism, often-aberrant evolutionary trajectories, and some of the world’s most diverse regional biotas. Here we investigate the evolution of montane endemism, ecology and body size in a clade of direct-developing frogs (Choerophryne, Microhylidae) from New Guinea. Methods. Phylogenetic relationships were estimated from a mitochondrial molecular dataset using Bayesian and maximum likelihood approaches. Ancestral state reconstruction was used to infer the evolution of elevational distribution, ecology (indexed by male calling height), and body size, and phylogenetically corrected regression was employed to examine the relationships between these three traits. Results. We obtained strong support for a monophyletic lineage comprising the majority of taxa sampled. Within this clade we identified one subclade that appears to have diversified primarily in montane habitats of the Central Cordillera (> 1000 m. a.s.l), with subsequent dispersal to isolated North Papuan Mountains. A second subclade (characterised by moderately to very elongated snouts) appears to have diversified primarily in hill forests (< 1000 m a.s.l.), with inferred independent upwards colonisations of isolated montane habitats, especially in isolated North Papuan Mountains. We found no clear relationship between extremely small body size (adult SVL less than 15mm) and elevation, but a stronger relationship with ecology – smaller species tend to be more terrestrial. Conclusions. Orogeny and climatic oscillations have interacted to generate high montane biodiversity in New Guinea via both localised diversification within montane habitats (centric endemism) and periodic dispersal across lowland regions (eccentric endemism). The correlation between extreme miniaturisation and terrestrial habits reflects a general trend in frogs, suggesting that ecological or physiological constraints limit niche usage by miniaturised frogs, even in extremely wet environments such as tropical mountains.


2016 ◽  
Author(s):  
Paul M Oliver ◽  
Amy Iannella ◽  
Stephen J Richards ◽  
Michael S.Y Lee

Aims. Mountain ranges in the tropics are characterised by high levels of localised endemism, often-aberrant evolutionary trajectories, and some of the world’s most diverse regional biotas. Here we investigate the evolution of montane endemism, ecology and body size in a clade of direct-developing frogs (Choerophryne, Microhylidae) from New Guinea. Methods. Phylogenetic relationships were estimated from a mitochondrial molecular dataset using Bayesian and maximum likelihood approaches. Ancestral state reconstruction was used to infer the evolution of elevational distribution, ecology (indexed by male calling height), and body size, and phylogenetically corrected regression was employed to examine the relationships between these three traits. Results. We obtained strong support for a monophyletic lineage comprising the majority of taxa sampled. Within this clade we identified one subclade that appears to have diversified primarily in montane habitats of the Central Cordillera (> 1000 m. a.s.l), with subsequent dispersal to isolated North Papuan Mountains. A second subclade (characterised by moderately to very elongated snouts) appears to have diversified primarily in hill forests (< 1000 m a.s.l.), with inferred independent upwards colonisations of isolated montane habitats, especially in isolated North Papuan Mountains. We found no clear relationship between extremely small body size (adult SVL less than 15mm) and elevation, but a stronger relationship with ecology – smaller species tend to be more terrestrial. Conclusions. Orogeny and climatic oscillations have interacted to generate high montane biodiversity in New Guinea via both localised diversification within montane habitats (centric endemism) and periodic dispersal across lowland regions (eccentric endemism). The correlation between extreme miniaturisation and terrestrial habits reflects a general trend in frogs, suggesting that ecological or physiological constraints limit niche usage by miniaturised frogs, even in extremely wet environments such as tropical mountains.


Mammalia ◽  
2016 ◽  
Vol 80 (4) ◽  
Author(s):  
Peter John Taylor ◽  
Aluwani Nengovhela ◽  
Jabulani Linden ◽  
Roderick M. Baxter

AbstractClimate change constitutes a potential threat to montane biodiversity, particularly in low-altitude, tropical mountains; however, few data exist for the Afromontane taxa. In South Africa, the temperate grassland and fynbos biomes are mostly associated with the Great Escarpment and the high-lying central plateau. Varying contractions of the grassland and fynbos biomes are predicted under different climate scenarios by 2050. Animal taxa adapted to these biomes should suffer similar range declines and can be used to independently test the vegetation models. We constructed MaxEnt models from 271 unique locality records for three species of montane and submontane vlei rats that are closely associated with grassland (


Sign in / Sign up

Export Citation Format

Share Document