rooting depth
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 120)

H-INDEX

45
(FIVE YEARS 5)

2022 ◽  
Vol 26 (1) ◽  
pp. 17-34
Author(s):  
Hongyu Li ◽  
Yi Luo ◽  
Lin Sun ◽  
Xiangdong Li ◽  
Changkun Ma ◽  
...  

Abstract. Plant root–soil water interactions are fundamental to vegetation–water relationships. Soil water availability and distribution impact the temporal–spatial dynamics of roots and vice versa. In the Loess Plateau (LP) of China, where semi-arid and arid climates prevail and deep loess soil dominates, drying soil layers (DSLs) have been extensively reported in artificial forestland. While the underlying mechanisms that cause DSLs remain unclear, they hypothetically involve root–soil water interactions. Although available root growth models are weak with respect to simulating the rooting depth, this study addresses the hypothesis of the involvement of root–soil water interactions in DSLs using a root growth model that simulates both the dynamic rooting depth and fine-root distribution, coupled with soil water, based on cost–benefit optimization. Evaluation of field data from an artificial black locust (Robinia pseudoacacia L.) forest site in the southern LP positively proves the model's performance. Further, a long-term simulation, forced by a 50-year climatic data series with varying precipitation, was performed to examine the DSLs. The results demonstrate that incorporating the dynamic rooting depth into the current root growth models is necessary to reproduce soil drying processes. The simulations revealed that the upper boundary of the DSLs fluctuates strongly with infiltration events, whereas the lower boundary extends successively with increasing rooting depth. Most infiltration was intercepted by the top 2.0 m layer, which was the most active zone of infiltration and root water uptake. Below this, the percentages of fine roots (5.0 %) and water uptake (6.2 %) were small but caused a persistently negative water balance and consequent DSLs. Therefore, the proposed root–water interaction approach succeeded in revealing the intrinsic properties of DSLs; their persistent extension and the lack of an opportunity for recovery from the drying state may adversely affect the implementation of artificial afforestation in this region as well as in other regions with similar climates and soils.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen Luo ◽  
Xiaoyu Zai ◽  
Jieyu Sun ◽  
Da Li ◽  
Yuanli Li ◽  
...  

Root diameter and rooting depth lead to morphological and architectural heterogeneity of plant roots; however, little is known about their effects on root-associated microbial communities. Bacterial community assembly was explored across 156 samples from three rhizocompartments (the rhizosphere, rhizoplane, and endosphere) for different diameters (0.0–0.5 mm, 0.5–1.0 mm, 1.0–2.0 mm, and>2.0 mm) and depths (0–5 cm, 5–10 cm, 10–15 cm, and 15–20 cm) of soybean [Glycine max (L.) Merrill] root systems. The microbial communities of all samples were analyzed using amplicon sequencing of bacterial 16S rRNA genes. The results showed that root diameter significantly affected the rhizosphere and endosphere bacterial communities, while rooting depth significantly influenced the rhizosphere and rhizoplane bacterial communities. The bacterial alpha diversity decreased with increasing root diameter in all three rhizocompartments, and the diversity increased with increasing rooting depth only in the rhizoplane. Clearly, the hierarchical enrichment process of the bacterial community showed a change from the rhizosphere to the rhizoplane to the endosphere, and the bacterial enrichment was higher in thinner or deeper roots (except for the roots at a depth of 15–20 cm). Network analysis indicated that thinner or deeper roots led to higher bacterial network complexity. The core and keystone taxa associated with the specific root diameter class and rooting depth class harbored specific adaptation or selection strategies. Root diameter and rooting depth together affected the root-associated bacterial assembly and network complexity in the root system. Linking root traits to microbiota may enhance our understanding of plant root-microbe interactions and their role in developing environmentally resilient root ecosystems.


2021 ◽  
Author(s):  
R. Kyle Derby ◽  
Brian A. Needelman ◽  
Ana A. Roden ◽  
J. Patrick Megonigal

AbstractDirect measurement of methane emissions is cost-prohibitive for greenhouse gas offset projects, necessitating the development of alternative accounting methods such as proxies. Salinity is a useful proxy for tidal marsh CH4 emissions when comparing across a wide range of salinity regimes but does not adequately explain variation in brackish and freshwater regimes, where variation in emissions is large. We sought to improve upon the salinity proxy in a marsh complex on Deal Island Peninsula, Maryland, USA by comparing emissions from four strata differing in hydrology and plant community composition. Mean CH4 chamber-collected emissions measured as mg CH4 m−2 h−1 ranked as S. alterniflora (1.2 ± 0.3) ≫ High-elevation J. roemerianus (0.4 ± 0.06) > Low-elevation J. roemerianus (0.3 ± 0.07) = S. patens (0.1 ± 0.01). Sulfate depletion generally reflected the same pattern with significantly greater depletion in the S. alterniflora stratum (61 ± 4%) than in the S. patens stratum (1 ± 9%) with the J. roemerianus strata falling in between. We attribute the high CH4 emissions in the S. alterniflora stratum to sulfate depletion likely driven by limited connectivity to tidal waters. Low CH4 emissions in the S. patens stratum are attributed to lower water levels, higher levels of ferric iron, and shallow rooting depth. Moderate CH4 emissions from the J. roemerianus strata were likely due to plant traits that favor CH4 oxidation over CH4 production. Hydrology and plant community composition have significant potential as proxies to estimate CH4 emissions at the site scale.


Author(s):  
Abdullah Khan ◽  
Ziting Wang ◽  
Zhengxia Chen ◽  
Junyao Bu ◽  
Muhammad Adnan ◽  
...  

Abstract Background Plant microbiomes and soil are bridged by rhizobacteria, maintaining and improving plant health and growth in different aspects. This study was conducted in the field station of the Guangxi University, Fusui, China. We investigated soil nutrients, root morphology and rhizosphere bacterial composition, and community structures in 18 sugarcane genotypes concerning sugar content under the same environmental condition. Results Most of the rhizosphere microbiomes of these genotypes exhibited similar bacterial compositions. However, the evaluated genotypes harbored a significant effect and difference in the abundance of operational taxonomic units and bacterial composition in the rhizosphere compartments. Alpha diversity analysis on the rhizosphere microbiome showed a significant difference in the bacterial diversity (Shannon index, p < 0.001) and OTU richness (Chao1, p < 0.001). The principal coordinate analysis (PCoA) and hierarchical cluster analysis revealed that the genotype replicated samples grouped, indicating their similarity. Besides, these genotypes also differed significantly in terms of root structure and soil properties. A significant genotypic effect (p < 0.05) was found in the root traits except for rooting depth. The soil chemical properties were significantly different among the evaluated genotypes. Furthermore, sucrose content was strongly correlated with the total root length (TRL) and rooting depth. Genotypes (FN-1702, GUC-3, ZZ-13, ZZ-10, ZZ-6) were the best performing and distinct in bacterial diversity, root structure, soil parameters and sucrose content. Conclusion The results showed a closely related and highly conserved bacterial community of the rhizosphere microbiome. The rhizosphere microbiome diversity and related bacterial communities were highly associated with the relevant plant taxa, probably at the order level. As a result, it is possible to conclude that the host genotype and the same environmental condition influenced the rhizosphere microbiome via root phenes. Future research regarding plant phenes and microbiome functional groups could be considered an essential factor. Graphic abstract


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1540
Author(s):  
José L. García-Pérez ◽  
Juan A. Oliet ◽  
Pedro Villar-Salvador ◽  
Jorge Eduardo Guzmán

Specific functional traits such as shade tolerance or leaf habits can enhance root growth dynamics and structure of planted seedlings in the understory of planted forests. We assessed how low and moderate light levels (17 and 33% of full sunlight, mimicking after-thinning stocking) affect the root growth dynamics and structure of four late successional trees, three deciduous (Acer monspessulanum L., Quercus pyrenaica Willd and Sorbus torminalis (L.) Crantz) and one evergreen (Quercus ilex L.) species. Rooting depth, dynamics and structure were mainly explained by species functional differences. Roots of deciduous trees elongated faster and deeper and were larger than the roots of the evergreen Q. ilex. Among deciduous trees, S. torminalis had the lowest root growth. Specific leaf area and nutrient concentration were positively related to root growth, highlighting the importance of traits related to the plant economic spectrum, as determinants of species root growth differences. Moderate light level slightly enhanced root growth and decreased the specific leaf area (SLA). Species differences in water potential under drought were positively related to rooting depth, evidencing the importance of its role in overcoming drought stress during seedling establishment. These findings can guide the selection of late successional, shade tolerant tree species for underplanting thinned Mediterranean plantations and provide insights into their ecology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ma Lihui ◽  
Liu Xiaoli ◽  
Chai Jie ◽  
Wang Youke ◽  
Yang Jingui

The vertical root distribution and rooting depth are the main belowground plant functional traits used to indicate drought resistance in arid and semiarid regions. The effects of the slope aspect on the aboveground traits are visible but not the belowground deep root traits. We aimed to investigate the fine root traits of the locust tree (Robinia pseudoacacia L.) planted on southerly and northerly aspects, and the variations in the rooting depth in regions with different rainfall, as well as assessing how deep rooting, might affect the response to drought in a loess region. We selected three study sites with different rainfall amounts, with six sampling plots at each site (three each with southerly and northerly aspects). Soil core samples were collected down to the depth where no roots were present. The locust trees tended to develop deeper fine roots rather than greater heights. The tree height and diameter were greater for locust trees on northerly aspects, whereas trees on southerly aspects had significantly deeper rooting depths. Fine root traits (root length, root area, and root dry weight density) were higher in the southerly aspect for both Changwu and Ansai, but lower in Suide. The ratio of the root front depth tree height ranged from 1.04 to 3.17, which was higher on southerly than northerly aspects, and it increased as the rainfall decreased. Locust tree growth traits (belowground fine root and aboveground tree height) were positively correlated with the mean annual rainfall. The soil moisture content of the topsoil decreased as the rainfall decreased, but the pattern varied in the deep layer. Our results suggest that the variations in the belowground rooting depth under different slope aspects may be related to plant survival strategies. The vertical extension of the rooting depth and tree height may be key functional traits that determine plant growth in drought-prone regions.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2177
Author(s):  
Felix Frimpong ◽  
Michael Anokye ◽  
Carel W. Windt ◽  
Ali A. Naz ◽  
Michael Frei ◽  
...  

A vigorous root system in barley promotes water uptake from the soil under water-limited conditions. We investigated three spring barley genotypes with varying water stress responses using rhizoboxes at the seedling stage. The genotypes comprised two elite German cultivars, Barke and Scarlett, and a near-isogenic line, NIL 143. The isogenic line harbors the wild allele pyrroline-5-carboxylate synthase1-P5cs1. Root growth in rhizoboxes under reduced water availability conditions caused a significant reduction in total root length, rooting depth, root maximum width, and root length density. On average, root growth was reduced by more than 20% due to water stress. Differences in organ proline concentrations were observed for all genotypes, with shoots grown under water stress exhibiting at least a 30% higher concentration than the roots. Drought induced higher leaf and root proline concentrations in NIL 143 compared with any of the other genotypes. Under reduced water availability conditions, NIL 143 showed less severe symptoms of drought, higher lateral root length, rooting depth, maximum root width, root length density, and convex hull area compared with Barke and Scarlett. Within the same comparison, under water stress, NIL 143 had a higher proportion of lateral roots (+30%), which were also placed at deeper substrate horizons. NIL 143 had a less negative plant water potential and higher relative leaf water content and stomatal conductance compared with the other genotypes under water stress. Under these conditions, this genotype also maintained an enhanced net photosynthetic rate and exhibited considerable fine root growth (diameter class 0.05–0.35 mm). These results show that water stress induces increased shoot and root proline accumulation in the NIL 143 barley genotype at the seedling stage and that this effect is associated with increased lateral root growth.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1376
Author(s):  
Ieva Bebre ◽  
Hannes Riebl ◽  
Peter Annighöfer

Light availability is a crucial resource determining seedling survival, establishment, and growth. Competition for light is asymmetric, giving the taller individuals a competitive advantage for obtaining light resources. Species-specific traits, e.g., shade tolerance, rooting depth, and leaf morphology, determine their strategical growth response under limited resource availability and different competitive interactions. We established a controlled pot experiment using European beech, Norway spruce, and Douglas fir seedlings and applying three different light availability levels—10%, 20%, and 50%. The experiment’s main aim was to better understand the effects of light availability and competition type on the growth, growth allocation, and biomass production of recently planted seedlings. We planted four seedlings per pot in either monocultures or mixtures of two species. Relative height and diameter growth and aboveground woody biomass of seedlings increased with increasing light availability. All seedlings allocated more growth to height than diameter with decreasing light availability. Seedlings that reached on average greater height in the previous year allocated less growth to height in the following year. Additionally, there were general differences in growth allocation to the height between gymnosperms and angiosperms, but we did not find an effect of the competitor’s identity. Our mixture effect analysis trends suggested that mixtures of functionally dissimilar species are more likely to produce higher biomass than mixtures of more similar species such as the two studied conifers. This finding points towards increased productivity through complementarity.


Sign in / Sign up

Export Citation Format

Share Document