lane departure
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 84)

H-INDEX

23
(FIVE YEARS 4)

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Mihail-Alexandru Andrei ◽  
Costin-Anton Boiangiu ◽  
Nicolae Tarbă ◽  
Mihai-Lucian Voncilă

Modern vehicles rely on a multitude of sensors and cameras to both understand the environment around them and assist the driver in different situations. Lane detection is an overall process as it can be used in safety systems such as the lane departure warning system (LDWS). Lane detection may be used in steering assist systems, especially useful at night in the absence of light sources. Although developing such a system can be done simply by using global positioning system (GPS) maps, it is dependent on an internet connection or GPS signal, elements that may be absent in some locations. Because of this, such systems should also rely on computer vision algorithms. In this paper, we improve upon an existing lane detection method, by changing two distinct features, which in turn leads to better optimization and false lane marker rejection. We propose using a probabilistic Hough transform, instead of a regular one, as well as using a parallelogram region of interest (ROI), instead of a trapezoidal one. By using these two methods we obtain an increase in overall runtime of approximately 30%, as well as an increase in accuracy of up to 3%, compared to the original method.


Author(s):  
Hyeongho Lim ◽  
Changhee Kim ◽  
Kyongsu Yi ◽  
Kwangki Jeon

This paper describes design, implementation, and evaluation of human driving data-based Lane Keeping Assistance System (LKAS) for electric bus equipped with a hybrid electric power steering system. The hybrid electric-power steering system used in this study means a steering system in which an Electric Power Steering (EPS) system and an Electro-Hydraulic Power Steering (EHPS) system are integrated into a ball-nut. A dynamic model of hybrid EPS system including EHPS system and EPS system has been developed to generate EPS torque and EHPS force corresponding to the input torque. In order to determine proper timing of LKAS intervention, driving data of electric bus drivers were collected and driving patterns were analyzed using a 2-D normal distribution probability density function. Lane information necessary for the lane-keeping assistance system is obtained from a vision camera mounted on the electric bus. Sliding mode control is used to get a Steering Wheel Angle (SWA) required for LKAS. A Proportional–Integral (PI) control is used to obtain an overlay torque required to track the target SWA. A proposed DLC threshold has been validated using vehicle simulation software, TruckSim, and MATLAB/Simulink. It is shown that the proposed DLC threshold shows good performance in both cases of slow lane departure and fast lane departure. The proposed algorithm has been successfully implemented on the electric bus and evaluated via real-world driving tests. Test scenario setting and the evaluation of performance were carried out by ISO 11270 criteria. It is shown that the algorithm successfully prevented the electric bus from unintended lane departure satisfying ISO 11270 criteria.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7691
Author(s):  
Zheng Wang ◽  
Satoshi Suga ◽  
Edric John Cruz Nacpil ◽  
Bo Yang ◽  
Kimihiko Nakano

Driver distraction is a well-known cause for traffic collisions worldwide. Studies have indicated that shared steering control, which actively provides haptic guidance torque on the steering wheel, effectively improves the performance of distracted drivers. Recently, adaptive shared steering control based on the forearm muscle activity of the driver has been developed, although its effect on distracted driver behavior remains unclear. To this end, a high-fidelity driving simulator experiment was conducted involving 18 participants performing double lane change tasks. The experimental conditions comprised two driver states: attentive and distracted. Under each condition, evaluations were performed on three types of haptic guidance: none (manual), fixed authority, and adaptive authority based on feedback from the forearm surface electromyography of the driver. Evaluation results indicated that, for both attentive and distracted drivers, haptic guidance with adaptive authority yielded lower driver workload and reduced lane departure risk than manual driving and fixed authority. Moreover, there was a tendency for distracted drivers to reduce grip strength on the steering wheel to follow the haptic guidance with fixed authority, resulting in a relatively shorter double lane change duration.


2021 ◽  
Vol 11 (22) ◽  
pp. 10783
Author(s):  
Felipe Franco ◽  
Max Mauro Dias Santos ◽  
Rui Tadashi Yoshino ◽  
Leopoldo Rideki Yoshioka ◽  
João Francisco Justo

One of the main actions of the driver is to keep the vehicle in a road lane within its markings, which could be aided with modern driver-assistance systems. Forward digital cameras in vehicles allow deploying computer vision strategies to extract the road recognition characteristics in real-time to support several features, such as lane departure warning, lane-keeping assist, and traffic recognition signals. Therefore, the road lane marking needs to be recognized through computer vision strategies providing the functionalities to decide on the vehicle’s drivability. This investigation presents a modular architecture to support algorithms and strategies for lane recognition, with three principal layers defined as pre-processing, processing, and post-processing. The lane-marking recognition is performed through statistical methods, such as buffering and RANSAC (RANdom SAmple Consensus), which selects only objects of interest to detect and recognize the lane markings. This methodology could be extended and deployed to detect and recognize any other road objects.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012130
Author(s):  
A V Tumasov ◽  
D Yu Tyugin ◽  
D M Porubov ◽  
V I Filatov ◽  
A A Gladyshev

Abstract The way to improve the safety of vehicles using ADAS systems has successfully proved itself in practice. The use of ADAS systems in vehicles is mandatory in many countries of the world and is accepted at the state level. One of the most widely used ADAS systems is the Lane Departure Warning System (LDWS). The paper describes the principles of operation of existing LDWS in the segment of light commercial vehicles (LCV). The algorithm and structure of the developed LDWS for the GAZelle Next vehicle are presented. The description and analysis of algorithms for recognition of road markings are given. The results and comparative analysis of virtual and road tests of the LDWS are presented. Conclusions are given on the operation of the system and the algorithm for recognizing road markings.


2021 ◽  
Author(s):  
Srdan Dragas ◽  
Ratko Grbic ◽  
Matteo Brisinello ◽  
Krsto Lazic

2021 ◽  
Author(s):  
Domagoj Spoljar ◽  
Mario Vranjes ◽  
Sandra Nemet ◽  
Nebojsa Pjevalica

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lian Xie ◽  
Chaozhong Wu ◽  
Min Duan ◽  
Nengchao Lyu

Human-related factors are a crucial inducement of traffic accidents. Understanding the influence of freeway environments on the driving behavior and workload experienced by drivers has been demonstrated to be of primary importance for improving traffic safety. To study the effect of alignment, traffic flow, and sign information on drivers’ mental workload and behavior, 16 scenarios were constructed using the orthogonal design method, and simulated driving experiments were carried out with 45 participants. During driving, indicators such as the mean and standard deviation of vehicle speed and lane departure were collected, and the NASA-TLX questionnaire was adopted to measure workload. Analysis of variance results indicated that the radius of the horizontal curve, gradient, flow, and sign information level have a significant influence on drivers’ workload and speed keeping ability. In addition, the horizontal curve radius has a significant effect on lane keeping ability. The importance of safety influencing factors on driving workload and performance was quantitatively ranked by integrating the trend of Deng’s correlation degree, comprehensive correlation degree, and similar correlation degree, whose weight was calculated using the entropy method. Traffic sign information was found to have the greatest impact on workload. In terms of driving performance, traffic volume has the greatest influence on the mean and standard deviation of vehicle speed, followed by the amount of sign information. Lane departure is most affected by the radius of the horizontal curve. These findings provide guidance for freeway traffic safety regulation, including workload control and road facility optimization.


Sign in / Sign up

Export Citation Format

Share Document