willmore surface
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Nicolas Marque

Abstract In this paper, we build an explicit example of a minimal bubble on a Willmore surface, showing there cannot be compactness for Willmore immersions of Willmore energy above $16 \pi $. Additionally, we prove an inequality on the 2nd residue for limits of sequences of Willmore immersions with simple minimal bubbles. Doing so, we exclude some gluing configurations and prove compactness for immersed Willmore tori of energy below $12 \pi $.


2020 ◽  
pp. 1-25
Author(s):  
JOSEF F. DORFMEISTER ◽  
PENG WANG

A Willmore surface $y:M\rightarrow S^{n+2}$ has a natural harmonic oriented conformal Gauss map $Gr_{y}:M\rightarrow SO^{+}(1,n+3)/SO(1,3)\times SO(n)$ , which maps each point $p\in M$ to its oriented mean curvature 2-sphere at $p$ . An easy observation shows that all conformal Gauss maps of Willmore surfaces satisfy a restricted nilpotency condition, which will be called “strongly conformally harmonic.” The goal of this paper is to characterize those strongly conformally harmonic maps from a Riemann surface $M$ to $SO^{+}(1,n+3)/SO^{+}(1,3)\times SO(n)$ , which are the conformal Gauss maps of some Willmore surface in $S^{n+2}.$ It turns out that generically, the condition of being strongly conformally harmonic suffices to be associated with a Willmore surface. The exceptional case will also be discussed.


2019 ◽  
Vol 162 (3-4) ◽  
pp. 537-558
Author(s):  
K. Leschke ◽  
K. Moriya

Abstract The classical notion of the Darboux transformation of isothermic surfaces can be generalised to a transformation for conformal immersions. Since a minimal surface is Willmore, we can use the associated $$\mathbb { C}_*$$C∗-family of flat connections of the harmonic conformal Gauss map to construct such transforms, the so-called $$\mu $$μ-Darboux transforms. We show that a $$\mu $$μ-Darboux transform of a minimal surface is not minimal but a Willmore surface in 4-space. More precisely, we show that a $$\mu $$μ-Darboux transform of a minimal surface f is a twistor projection of a holomorphic curve in $$\mathbb { C}\mathbb { P}^3$$CP3 which is canonically associated to a minimal surface $$f_{p,q}$$fp,q in the right-associated family of f. Here we use an extension of the notion of the associated family $$f_{p,q}$$fp,q of a minimal surface to allow quaternionic parameters. We prove that the pointwise limit of Darboux transforms of f is the associated Willmore surface of f at $$\mu =1$$μ=1. Moreover, the family of Willmore surfaces $$\mu $$μ-Darboux transforms, $$\mu \in \mathbb { C}_*$$μ∈C∗, extends to a $$\mathbb { C}\mathbb { P}^1$$CP1 family of Willmore surfaces $$f^\mu : M \rightarrow S^4$$fμ:M→S4 where $$\mu \in \mathbb { C}\mathbb { P}^1$$μ∈CP1.


Sign in / Sign up

Export Citation Format

Share Document