darboux transforms
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 298
Author(s):  
Chuu-Lian Terng ◽  
Zhiwei Wu

A smooth map γ in the symplectic space R2n is Lagrangian if γ,γx,…, γx(2n−1) are linearly independent and the span of γ,γx,…,γx(n−1) is a Lagrangian subspace of R2n. In this paper, we (i) construct a complete set of differential invariants for Lagrangian curves in R2n with respect to the symplectic group Sp(2n), (ii) construct two hierarchies of commuting Hamiltonian Lagrangian curve flows of C-type and A-type, (iii) show that the differential invariants of solutions of Lagrangian curve flows of C-type and A-type are solutions of the Drinfeld-Sokolov’s C^n(1)-KdV flows and A^2n−1(2)-KdV flows respectively, (iv) construct Darboux transforms, Permutability formulas, and scaling transforms, and give an algorithm to construct explicit soliton solutions, (v) give bi-Hamiltonian structures and commuting conservation laws for these curve flows.


2020 ◽  
Vol 24 (4) ◽  
pp. 2519-2527
Author(s):  
Sheng Zhang ◽  
Dongdong Liu

Darboux transforms, exact solutions and conservation laws are important topics in thermal science and other fields as well. In this paper, the new non-linear differential-difference equations associated a discrete linear spectral problem are studied analytically. Firstly, the Darboux transform of the studied equations is constructed, and exact solutions are then obtained. Finally, infinite many conservation laws are derived.


2019 ◽  
Vol 162 (3-4) ◽  
pp. 537-558
Author(s):  
K. Leschke ◽  
K. Moriya

Abstract The classical notion of the Darboux transformation of isothermic surfaces can be generalised to a transformation for conformal immersions. Since a minimal surface is Willmore, we can use the associated $$\mathbb { C}_*$$C∗-family of flat connections of the harmonic conformal Gauss map to construct such transforms, the so-called $$\mu $$μ-Darboux transforms. We show that a $$\mu $$μ-Darboux transform of a minimal surface is not minimal but a Willmore surface in 4-space. More precisely, we show that a $$\mu $$μ-Darboux transform of a minimal surface f is a twistor projection of a holomorphic curve in $$\mathbb { C}\mathbb { P}^3$$CP3 which is canonically associated to a minimal surface $$f_{p,q}$$fp,q in the right-associated family of f. Here we use an extension of the notion of the associated family $$f_{p,q}$$fp,q of a minimal surface to allow quaternionic parameters. We prove that the pointwise limit of Darboux transforms of f is the associated Willmore surface of f at $$\mu =1$$μ=1. Moreover, the family of Willmore surfaces $$\mu $$μ-Darboux transforms, $$\mu \in \mathbb { C}_*$$μ∈C∗, extends to a $$\mathbb { C}\mathbb { P}^1$$CP1 family of Willmore surfaces $$f^\mu : M \rightarrow S^4$$fμ:M→S4 where $$\mu \in \mathbb { C}\mathbb { P}^1$$μ∈CP1.


Geometry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Katsuhiro Moriya

The notion of a generalized harmonic inverse mean curvature surface in the Euclidean four-space is introduced. A backward Bäcklund transform of a generalized harmonic inverse mean curvature surface is defined. A Darboux transform of a generalized harmonic inverse mean curvature surface is constructed by a backward Bäcklund transform. For a given isothermic harmonic inverse mean curvature surface, its classical Darboux transform is a harmonic inverse mean curvature surface. Then a transform of a solution to the Painlevé III equation in trigonometric form is defined by a classical Darboux transform of a harmonic inverse mean curvature surface of revolution.


2012 ◽  
Vol 140 (1-2) ◽  
pp. 213-236 ◽  
Author(s):  
F. E. Burstall ◽  
J. F. Dorfmeister ◽  
K. Leschke ◽  
A. C. Quintino

Sign in / Sign up

Export Citation Format

Share Document