polarimetric synthetic aperture radar
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 103)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 14 (2) ◽  
pp. 264
Author(s):  
Dawei Wang ◽  
Jianhua Wan ◽  
Shanwei Liu ◽  
Yanlong Chen ◽  
Muhammad Yasir ◽  
...  

Oil spill pollution at sea causes significant damage to marine ecosystems. Quad-polarimetric Synthetic Aperture Radar (SAR) has become an essential technology since it can provide polarization features for marine oil spill detection. Using deep learning models based on polarimetric features, oil spill detection can be achieved. However, there is insufficient feature extraction due to model depth, small reception field lend due to loss of target information, and fixed hyperparameter for models. The effect of oil spill detection is still incomplete or misclassified. To solve the above problems, we propose an improved deep learning model named BO-DRNet. The model can obtain a more sufficiently and fuller feature by ResNet-18 as the backbone in encoder of DeepLabv3+, and Bayesian Optimization (BO) was used to optimize the model’s hyperparameters. Experiments were conducted based on ten prominent polarimetric features were extracted from three quad-polarimetric SAR images obtained by RADARSAT-2. Experimental results show that compared with other deep learning models, BO-DRNet performs best with a mean accuracy of 74.69% and a mean dice of 0.8551. This paper provides a valuable tool to manage upcoming disasters effectively.


2021 ◽  
Vol 14 (1) ◽  
pp. 155
Author(s):  
Yanyan Zhang ◽  
Sheng Chang ◽  
Robert Wang ◽  
Peng Li ◽  
Yongwei Zhang ◽  
...  

Quadrature-polarimetric synthetic aperture radar (quad-pol SAR) has extensive applications, including climate zones classification, extraction of surface roughness, soil moisture mapping, moving target indication, and rice mapping. Hybrid quad-pol SAR ameliorates the range ambiguity performance of conventional quad-pol SAR. However, the azimuth ambiguity of its cross-polarized (cross-pol) echo signals is serious, limiting the swath width of SAR. Therefore, this paper proposes a spaceborne weighted amplitude modulation (WAM) full-polarimetric (full-pol) SAR system, and it can suppress the azimuth ambiguity of hybrid quad-pol SAR. The performance boost of the azimuth ambiguity by the two imaging modes of the proposed SAR system is detailed and evaluated with the L-band system parameters. Moreover, the chirp scaling algorithm (CSA) is adopted to execute scene simulations for the two imaging modes. The results indicate that the proposed SAR system can effectively suppress the azimuth ambiguity of hybrid quad-pol SAR and verify the theoretical analysis.


2021 ◽  
Vol 50 (4) ◽  
pp. 706-721
Author(s):  
Shaofeng Lin ◽  
Zengguo Sun ◽  
Xuejun Peng ◽  
Lin Ni ◽  
Genfeng Wen ◽  
...  

GF-3 is the first C-Band full-polarimetric synthetic aperture radar (SAR) satellite with a space resolution up to 1m in China. The uneven brightness of SAR images is a problem when using GF-3 images, which makes it difficult to use and produce SAR images. In this paper, a brightness compensation method is proposed for GF-3 SAR images with unbalanced brightness in some areas based on a deep learning model named Cycle-Consistent Adversarial Networks (CycleGAN). The proposed method makes the image brightness relatively consistent, and it is compared with the MASK dodging algorithm, Wallis dodging algorithm and histogram equalization in terms of the profiles, brightness mean, standard deviation, and average gradient. Results of brightness compensation show that, the proposed method makes the inner brightness differences smaller, and the image quality is obviously improved, which provides even brightness image for subsequent applications, and has great practical significance.


2021 ◽  
Vol 13 (23) ◽  
pp. 4905
Author(s):  
Sijing Shu ◽  
Ji Yang ◽  
Chuanxun Yang ◽  
Hongda Hu ◽  
Wenlong Jing ◽  
...  

The automatic detection and analysis of ocean eddies has become a popular research topic in physical oceanography during the last few decades. Compact polarimetric synthetic aperture radar (CP SAR), an emerging polarimetric SAR system, can simultaneously acquire richer polarization information of the target and achieve large bandwidth observations. It has inherent advantages in ocean observation and is bound to become an ideal data source for ocean eddy observation and research. In this study, we simulated the CP data with L-band ALOS PALSAR fully polarimetric data. We assessed the detection and classification potential of ocean eddies from CP SAR by analyzing 50 CP features for 2 types of ocean eddies (“black”and “white”) based on the Euclidean distance and further carried out eddy detection and eddy information extraction experiments. The results showed that among the 50 CP features, the dihedral component power (Pd), shannon entropy (SEI), double bounce (Dbl), Stokes parameters (g0 and g3), eigenvalue (l1), lambda, RVoG parameter (ms), shannon entropy (SE), surface scattering component (Ps), and σHH all performed better for detecting “white” eddies. Moreover, the H-A combination parameter (1mHA), entropy, shannon entropy (SEP, SEI, and SE), probability (p2), polarization degree (m), anisotropy, probability (p1), double bounce (Dbl), H-A combination parameter (H1mA), circular polarization ratio (CPR), and σVV were better CP features for detecting “black” eddies.


2021 ◽  
Author(s):  
mohsen

Abstract Polarimetric Synthetic Aperture Radar (PolSAR) image classification is one of the most important applications in remote sensing. In this paper, the goal is PolSAR image classification and also introduce a method to obtain the best result for PolSAR image classification and recognition. In this article, we present the 3D-Gabor filters as a way in order to feature extraction of PolSAR images and get the best result with high accuracy for PolSAR image classification. Also, we prove that the 3D-Gabor filter approach can get higher accuracy than traditional methods for PolSAR images classification, but one of the most important challenges of 3D-Gabor filters is the number of features that are extracted from them. Therefore, by using 3D-Gabor filter we can't reach the optimal result because of the curse of dimensionality. So, to achieve the best results we propose a method to reduce the features that are extracted from 3D-Gabor filters. By using our proposed method, the features will be mapped to a new space with smaller dimensions. In the end, the experimental results indicate the superiority of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7393
Author(s):  
Yinbin Shen ◽  
Xiaoshuang Ma ◽  
Shengyuan Zhu ◽  
Jiangong Xu

Despeckling is a key preprocessing step for applications using PolSAR data in most cases. In this paper, a technique based on a nonlocal weighted linear minimum mean-squared error (NWLMMSE) filter is proposed for polarimetric synthetic aperture radar (PolSAR) speckle filtering. In the process of filtering a pixel by the LMMSE estimator, the idea of nonlocal means is employed to evaluate the weights of the samples in the estimator, based on the statistical equalities between the neighborhoods of the sample pixels and the processed pixel. The NWLMMSE estimator is then derived. In the preliminary processing, an effective step is taken to preclassify the pixels, aiming at preserving point targets and considering the similarity of the scattering mechanisms between pixels in the subsequent filter. A simulated image and two real-world PolSAR images are used for illustration, and the experiments show that this filter is effective in speckle reduction, while effectively preserving strong point targets, edges, and the polarimetric scattering mechanism.


2021 ◽  
Author(s):  
Takuma Watanabe ◽  
Hiroyoshi Yamada

In this research, we discuss the possibility of incorrect prediction of the double-bounce scattering (DBS) power in model-based decomposition (MBD) algorithms applied to polarimetric synthetic aperture radar (SAR) images of vegetated terrain. In most of the MBD schemes, the estimation of the DBS component is based on the assumption that the co-polarized phase difference (CPD) of the DBS is similar to those of backscattering from a pair of orthogonal planer conducting surfaces. However, for dielectric surfaces such as soil or vegetation trunks, this assumption is only valid within a certain range of radar incidence angle, which is dictated by the Brewster angles of the dielectric surfaces. If the incidence angle is out of this range, the DBS contribution is incorrectly estimated as the surface scattering. Moreover, because the Brewster angle is a function of surface permittivity, the angular range depends on moisture contents of the surfaces; therefore, correctness of the MBD results also depend on the surface moisture contents. To demonstrate this problem, we provide a simple numerical model of vegetated terrain, and we validate theoretical results by a series of controlled experiments carried out in an anechoic chamber with a simplified vegetation model.


2021 ◽  
Vol 13 (19) ◽  
pp. 3932
Author(s):  
Haoliang Li ◽  
Xingchao Cui ◽  
Siwei Chen

Polarimetric synthetic aperture radar (PolSAR) can obtain fully polarimetric information, which provides chances to better understand target scattering mechanisms. Ship detection is an important application of PolSAR and a number of scattering mechanism-based ship detection approaches have been established. However, the backscattering of manmade targets including ships is sensitive to the relative geometry between target orientation and radar line of sight, which makes ship detection still challenging. This work aims at mitigating this issue by target scattering diversity mining and utilization in polarimetric rotation domain with the interpretation tools of polarimetric coherence and correlation pattern techniques. The core idea is to find an optimal combination of polarimetric rotation domain features which shows the best potential to discriminate ship target and sea clutter pixel candidates. With the Relief method, six polarimetric rotation domain features derived from the polarimetric coherence and correlation patterns are selected. Then, a novel ship detection method is developed thereafter with these optimal features and the support vector machine (SVM) classifier. The underlying physics is that ship detection is equivalent to ship and sea clutter classification after the ocean and land partition. Four kinds of spaceborne PolSAR datasets from Radarsat-2 and GF-3 are used for comparison experiments. The superiority of the proposed detection methodology is clearly demonstrated. The proposed method achieves the highest figure of merit (FoM) of 99.26% and 100% for two Radarsat-2 datasets, and of 95.45% and 99.96% for two GF-3 datasets. Specially, the proposed method shows better performance to detect inshore dense ships and reserve the ship structure.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4295
Author(s):  
Dongsheng Liu ◽  
Ling Han

Ship detection with polarimetric synthetic aperture radar (PolSAR) has gained extensive attention due to its widespread application in maritime surveillance. Nevertheless, designing identifiable features to realize accurate ship detection is still challenging. For this purpose, a fine eight-component model-based decomposition scheme is first presented by incorporating four advanced physical scattering models, thus accurately describing the dominant and local structure scattering of ships. Through analyzing the exclusive scattering mechanisms of ships, a discriminative ship detection feature is then constructed from the derived contributions of eight kinds of scattering components. Combined with a spatial information-based guard filter, the efficacy of the feature is further amplified and thus a ship detector is proposed which fulfills the final ship detection. Several qualitative and quantitative experiments are conducted on real PolSAR data and the results demonstrate that the proposed method reaches the highest figure-of-merit (FoM) factor of 0.96, which outperforms the comparative methods in ship detection.


Sign in / Sign up

Export Citation Format

Share Document