computational hemodynamics
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 30
Author(s):  
Huidan Yu ◽  
Monsurul Khan ◽  
Hao Wu ◽  
Chunze Zhang ◽  
Xiaoping Du ◽  
...  

Inlet and outlet boundary conditions (BCs) play an important role in newly emerged image-based computational hemodynamics for blood flows in human arteries anatomically extracted from medical images. We developed physiological inlet and outlet BCs based on patients’ medical data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler velocity waveform. The BC of each outlet is a pulsatile pressure calculated from the three-element Windkessel model, in which three physiological parameters are tuned by the corresponding Doppler velocity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equations through Guo’s non-equilibrium extrapolation scheme. Meanwhile, we performed uncertainty quantification for the impact of uncertainties on the computation results. An application study was conducted for six human aortorenal arterial systems. The computed pressure waveforms have good agreement with the medical measurement data. A systematic uncertainty quantification analysis demonstrates the reliability of the computed pressure with associated uncertainties in the Windkessel model. With the developed physiological BCs, the image-based computation hemodynamics is expected to provide a computation potential for the noninvasive evaluation of hemodynamic abnormalities in diseased human vessels.


2021 ◽  
pp. 179-203
Author(s):  
Guilherme B. Lopes ◽  
Luben Cabezas-Gómez ◽  
Raquel J. Lobosco

2021 ◽  
Author(s):  
Ivan Fumagalli ◽  
Piermario Vitullo ◽  
Roberto Scrofani ◽  
Christian Vergara

Hypertrophic Cardiomyopathy (HCM) is a pathological condition characterized by an abnormal thickening of the myocardium. When it affects the medio-basal portion of the septum, it is named Hypertrophic Obstructive Cardiomyopathy because it induces a flow obstruction in the left ventricle outflow tract, which may compromise the cardiac function and possibly lead to cardiac death. In this work, we investigate the hemodynamics of different HCM patients by means of computational hemodynamics, aiming at quantifying the effects of this pathology on blood flow and pressure gradients and thus providing clinical indications that may help diagnosis and the design of surgical treatment (septal myectomy). To this aim, we employ an enhanced version of an image-based computational pipeline proposed in a previous work, integrating fluid dynamics simulations with geometrical and functional data reconstructed from standard cine-MRI acquisitions. Blood flow is modelled as an incompressible Newtonian fluid, The corresponding Navier-Stokes equations are solved in a moving domain obtained from cine-MRI, whereas the valve leaflets are accounted for by a resistive method.


2020 ◽  
Vol 123 ◽  
pp. 103922
Author(s):  
Ivan Fumagalli ◽  
Marco Fedele ◽  
Christian Vergara ◽  
Luca Dede’ ◽  
Sonia Ippolito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document