velocity waveform
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 14)

H-INDEX

28
(FIVE YEARS 1)

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 30
Author(s):  
Huidan Yu ◽  
Monsurul Khan ◽  
Hao Wu ◽  
Chunze Zhang ◽  
Xiaoping Du ◽  
...  

Inlet and outlet boundary conditions (BCs) play an important role in newly emerged image-based computational hemodynamics for blood flows in human arteries anatomically extracted from medical images. We developed physiological inlet and outlet BCs based on patients’ medical data and integrated them into the volumetric lattice Boltzmann method. The inlet BC is a pulsatile paraboloidal velocity profile, which fits the real arterial shape, constructed from the Doppler velocity waveform. The BC of each outlet is a pulsatile pressure calculated from the three-element Windkessel model, in which three physiological parameters are tuned by the corresponding Doppler velocity waveform. Both velocity and pressure BCs are introduced into the lattice Boltzmann equations through Guo’s non-equilibrium extrapolation scheme. Meanwhile, we performed uncertainty quantification for the impact of uncertainties on the computation results. An application study was conducted for six human aortorenal arterial systems. The computed pressure waveforms have good agreement with the medical measurement data. A systematic uncertainty quantification analysis demonstrates the reliability of the computed pressure with associated uncertainties in the Windkessel model. With the developed physiological BCs, the image-based computation hemodynamics is expected to provide a computation potential for the noninvasive evaluation of hemodynamic abnormalities in diseased human vessels.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012023
Author(s):  
Wu Ye ◽  
Yong Lu ◽  
Lingzhi Xi ◽  
Qiang Zhang ◽  
Shaobin Hu

Abstract Rock breaking technology based on dry ice and energy-gathered agent has been developed and successfully applied in trench excavation for construction of oil pipeline. The vibration velocity waveform induced by this technology was monitored in site test to determine the attenuation law of vibration velocity with hypocentral distance. The results show that this rock breaking technology is effective method of trench excavation. It does not excessively damage the adjacent rock mass, ensuring the integrity of ditch walls. The vibration velocity induced by this technology is decay with the increase of hypocentral distance. At the hypocentral distance of 10m, the vibration velocity reduces to less than 20mm/s, which meets the requirements of the safety standard of blasting vibration in general buildings engineering. The results of this experiment have an important guiding effect on the field engineering practice and application of rock breaking technology based on dry ice and energy-gathered agent.


2021 ◽  
Vol 10 (13) ◽  
pp. 25
Author(s):  
Yoshitaka Takizawa ◽  
Youngseok Song ◽  
Tomofumi Tani ◽  
Takafumi Yoshioka ◽  
Kengo Takahashi ◽  
...  

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 996
Author(s):  
Han Soo Chang

Background: Despite a number of hypotheses, our understanding of the pathophysiology of syringomyelia is still limited. The current prevailing hypothesis assumes that the piston-like movement of the cerebellar tonsils drives the cerebrospinal fluid (CSF) into the syrinx through the spinal perivascular space. However, it still needs to be verified by further experimental data. A major unexplained problem is how CSF enters and remains in the syrinx that has a higher pressure than the subarachnoid space. Methods: I analyzed phase-contrast MRI scans of 18 patients with Chiari-I malformation with syringomyelia undergoing foramen magnum decompression and 21 healthy volunteers. I analyzed the velocity waveforms of the CSF and the brain in various locations. The obtained velocity waveforms were post-processed using a technique called synchronization in situ. I compared between the preoperative data and the control data (case-control study), as well as between the preoperative and postoperative data (cohort study). Results: The syrinx shrank in 17 (94%) patients with good clinical improvement. In Chiari-I patients, the velocity of the tonsil was significantly larger than controls, but was significantly smaller than that of the CSF in the subarachnoid space, suggesting passive rather than active movement. The abnormal tonsillar movement disappeared after surgery, but the velocity waveform of the spinal subarachnoid CSF did not change. These results, contradicting the above mentioned hypothesis, required an alternative explanation. I thus hypothesized that there is a CSF channel between the fourth ventricle and the syrinx. This channel assumes one-way valve function when mildly compressed by the cyclical movement of the cerebellar tonsil. The decompression of the tonsils switches off the one-way valve, collapsing the syrinx. Conclusions: My hypothesis reasonably explained my data that clearly contradicted the existing hypothesis, and successfully addressed the above-mentioned theoretical problem. It will serve as a working hypothesis for further study of syringomyelia pathophysiology.


Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 388
Author(s):  
Deniz Ertuncay ◽  
Andrea De Lorenzo ◽  
Giovanni Costa

Ground motions recorded in near-fault regions may contain pulse-like traces in the velocity domain. Their long periodicity can identify such signals with large amplitudes. Impulsive signals can be hazardous for buildings, creating large demands due to their long periods. In this study, a dataset was collected from various data centres. Initially, all the impulsive signals, which are in reality rare, are manually identified. Furthermore, then, synthetic velocity waveforms are created to increase the number of impulsive signals by using the model developed by Mavroeidis and Papageorgiou, and k−2 kinematic modelling. In accordance, a convolutional neural network (CNN) was trained to detect impulsive signals by using these synthetic impulsive signals and ordinary signals. Furthermore, manually labelled impulsive signals are used to detect the initiation and the termination positions of impulsive signals. To do so, the velocity waveform and position and amplitude information of the maximum and minimum points are used. Once the model detects the positions, the period of the pulse is calculated by analysing spectral periods. Although our detection algorithm works relatively worse than three robust algorithms used for benchmarks, it works significantly better in the determination of initiation and termination positions. At this moment, our models understand the features of the impulsive signals and detect their location without using any thresholds or any formulations that are heavily used in previous studies.


Author(s):  
Pawan Kumar Pandey ◽  
Chandan Paul ◽  
Malay K Das ◽  
Krishnamurthy Muralidhar

Shape memory polymer (SMP) foam is often proposed as the future alternative of coils in aneurysm treatment devices. Present work numerically investigates the unsteady, three-dimensional simulation of blood flow in a cerebral aneurysm filled with SMP foam. Simulations are conducted on patient-specific geometries with realistic blood velocity waveform imposed at the inlet while SMP foam is treated as a porous medium. The present study introduces a “loading risk map” that helps to visualize the hemodynamic effect of foam insertion on the aneurysm sac and neck. The loading risk maps suggest that while the SMP foam subdues the flow and wall shear pulsations in the aneurysm sac, the pressure distribution is minimally affected. The maps suggest that while the downstream lip is the most risk-prone site for both geometries, downstream vascular anatomy significantly influences foam efficiency in reducing pressure and wall shear stress loading.


2021 ◽  
pp. 58-61
Author(s):  
Sudipta Basu ◽  
Nandini Thakur Jha ◽  
Prasun Das ◽  
Swadha Priya Basu

Background: Pregnancy induced hypertension( PIH) poses a great risk to the maternal and child health issues. Early diagnosis, assessment of prognosis, and appropriate management at a judicious moment can change its fate in many ways. Objective: To assess the usefulness of Doppler parameters to evaluate PIH and to predict its adverse perinatal outcome. Methodology: 49 pregnant patients were taken after applying criteria and undergone ultrasonography and doppler with follow up subsequently. Results: We found that total 63.26% of patients having abnormal Doppler parameters.Of these all of them had abnormal UA S/D ratio,26.53% had abnormal CPR,46.93% had abnormal UA PI and 48.97% had abnormal UA RI . So in our study most common abnormal Doppler parameter was alteration in UA S/D ratio. Conclusion: Doppler indices from the foetal circulation can reliably predict adverse perinatal outcome in an obstetric patient population with a high prevalence of complications such as pregnancy induced hypertension


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Asma Ayadi ◽  
Wassila Sahtout ◽  
Olivier Baledent

AbstractObjectivesLocal wave speed is a biomarker which provides an objective analysis of the cardiovascular function. The aim of this study was to determine the local wave speed in the internal carotid artery by a new non-invasive method that measures blood velocity waveform at only one site.MethodsFor this purpose, the cepstral analysis was employed to determine the arrival time of the reflection wave and the wave speed in the carotid artery. To validate our model, we applied it experimentally in vivo on young and old healthy subjects. The blood velocity waveform was measured by using phase-contrast magnetic resonance for 22 subjects.ResultsOur experimental results correlated with reference values reported in previous studies conducted on the internal arterial carotid usually adopting the invasive method. They also correlated with those obtained by using the foot-to-foot method (R2=0.72). The wave speed obtained by the method developed in this study and that of the foot-to-foot method increased with age (p<0.001).ConclusionsThe method developed in this study can be applied in the other arteries and it can also be used with other techniques such as ultrasound imaging.


Sign in / Sign up

Export Citation Format

Share Document