plastic flow localization
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Lev B. Zuev

AbstractThe notions of plastic flow localization are reviewed here. It have been shown that each type of localized plasticity pattern corresponds to a given stage of deformation hardening. In the course of plastic flow development a changeover in the types of localization patterns occurs. The types of localization patterns are limited to a total of four pattern types. A correspondence has been set up between the emergent localization pattern and the respective flow stage. It is found that the localization patterns are manifestations of the autowave nature of plastic flow localization process, with each pattern type corresponding to a definite type of autowave. Propagation velocity, dispersion and grain size dependence of wavelength have been determined experimentally for the phase autowave. An elastic-plastic strain invariant has also been introduced to relate the elastic and plastic properties of the deforming medium. It is found that the autowave’s characteristics follow directly from the latter invariant. A hypothetic quasi-particle has been introduced which correlates with the localized plasticity autowave; the probable properties of the quasi-particle have been estimated. Taking the quasi-particle approach, the characteristics of the plastic flow localization process are considered herein.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1446
Author(s):  
Lev B. Zuev ◽  
Svetlana A. Barannikova

This paper is the first attempt to use the quasi-particle representations in plasticity physics. The de Broglie equation is applied to the analysis of autowave processes of localized plastic flow in various metals. The possibilities and perspectives of such approach are discussed. It is found that the localization of plastic deformation can be conveniently addressed by invoking a hypothetical quasi-particle conjugated with the autowave process of flow localization. The mass of the quasi-particle and the area of its localization have been defined. The probable properties of the quasi-particle have been estimated. Taking the quasi-particle approach, the characteristics of the plastic flow localization process are considered herein.


2020 ◽  
Vol 62 (12) ◽  
pp. 2240-2246
Author(s):  
Yu. V. Solov’eva ◽  
L. A. Valuiskaya ◽  
Ya. D. Lipatnikova ◽  
V. A. Starenchenko

2020 ◽  
Vol 1527 ◽  
pp. 012026
Author(s):  
L B Zuev ◽  
S A Barannikova ◽  
A M Zharmukhambetova

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 458 ◽  
Author(s):  
Lev B. Zuev ◽  
Svetlana A. Barannikova

The notions of plastic flow localization are outlined in the paper. It is shown that each type of localized plasticity pattern corresponds to a definite stage of deformation hardening. In the course of plastic flow development, a changeover in the types of localization patterns occurs. The types of localization patterns are limited in number: four pattern types are all that can be expected. A correspondence was set up between the emergent localization pattern and the respective flow stage. It is found that the localization patterns are manifestations of the autowave nature of plastic flow localization process, with each pattern type corresponding to a definite mode of autowave. In the course of plastic flow development, the following modes of autowaves will form in the following sequence: switching autowave → phase autowave → stationary dissipative structure → collapse of the autowave. Of particular interest are the phase autowave and the respective pattern observed. Propagation velocity, dispersion, and grain size dependence of wavelength were determined experimentally for the phase autowave. An elastic-plastic strain invariant was also introduced to relate the elastic and plastic properties of the deforming medium. It is found that the autowave characteristics follow directly from this invariant.


2019 ◽  
Vol 2019 (4) ◽  
pp. 273-280
Author(s):  
L. B. Zuev ◽  
A. G. Lunev ◽  
S. A. Barannikova ◽  
O. S. Staskevich

Sign in / Sign up

Export Citation Format

Share Document