scholarly journals Statistical features of plastic flow localization in materials

2019 ◽  
Vol 1205 ◽  
pp. 012029
Author(s):  
N A Kudryashov ◽  
R V Muratov ◽  
P N Ryabov
Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 458 ◽  
Author(s):  
Lev B. Zuev ◽  
Svetlana A. Barannikova

The notions of plastic flow localization are outlined in the paper. It is shown that each type of localized plasticity pattern corresponds to a definite stage of deformation hardening. In the course of plastic flow development, a changeover in the types of localization patterns occurs. The types of localization patterns are limited in number: four pattern types are all that can be expected. A correspondence was set up between the emergent localization pattern and the respective flow stage. It is found that the localization patterns are manifestations of the autowave nature of plastic flow localization process, with each pattern type corresponding to a definite mode of autowave. In the course of plastic flow development, the following modes of autowaves will form in the following sequence: switching autowave → phase autowave → stationary dissipative structure → collapse of the autowave. Of particular interest are the phase autowave and the respective pattern observed. Propagation velocity, dispersion, and grain size dependence of wavelength were determined experimentally for the phase autowave. An elastic-plastic strain invariant was also introduced to relate the elastic and plastic properties of the deforming medium. It is found that the autowave characteristics follow directly from this invariant.


2007 ◽  
Vol 340-341 ◽  
pp. 211-216
Author(s):  
Mitsutoshi Kuroda

In this study, effects of typical texture components observed in rolled aluminum alloy sheets (i.e. Copper, Brass, S, Cube and Goss texture components) on plastic flow localization are studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic-viscoplastic continuum slip constitutive relation. First, forming limits of thin sheet set by sheet necking are predicted using a Marciniak–Kuczynski (M–K-) type approach. It is shown that only the Cube texture component yields forming limits higher than that for a random texture in the biaxial stretch range. Next, three-dimensional shear band analyses are performed, using a three-dimensional version of M–K-type model, but the overall deformation mode is restricted to a plane strain state. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. It is concluded that the Cube texture component is said to be a shear band free texture, while some texture components exhibit significantly low resistance to shear band formation. Finally, shear band developments in plane strain pure bending of sheet specimens with the typical textures are studied.


Nature ◽  
2000 ◽  
Vol 406 (6798) ◽  
pp. 871-874 ◽  
Author(s):  
Tomas Diaz de la Rubia ◽  
Hussein M. Zbib ◽  
Tariq A. Khraishi ◽  
Brian D. Wirth ◽  
Max Victoria ◽  
...  

2018 ◽  
Vol 1115 ◽  
pp. 042038
Author(s):  
S A Barannikova ◽  
Yu V Li ◽  
A M Zharmukhambetova ◽  
L B. Zuev

2000 ◽  
Vol 650 ◽  
Author(s):  
B. D. Wirth ◽  
V. V. Bulatov ◽  
T. Diaz de la Rubia

ABSTRACTThe mechanisms of dislocation-defect interactions are of practical importance for developing quantitative structure-property relationships, mechanistic understanding of plastic flow localization and predictive models of mechanical behavior in metals under irradiation. In copper and other face centered cubic metals, high-energy particle irradiation produces hardening and shear localization. Post-irradiation microstructural examination in Cu reveals that irradiation has produced a high number density of nanometer sized stacking fault tetrahedra. Thus, the resultant irradiation hardening and shear localization is commonly attributed to the interaction between stacking fault tetrahedra and mobile dislocations, although the mechanism of this interaction is unknown. In this work, we present a comprehensive molecular dynamics simulation study that characterizes the interaction and fate of moving dislocations with stacking fault tetrahedra in Cu using an EAM interatomic potential. This work is intended to produce atomistic input into dislocation dynamics simulations of plastic flow localization in irradiated materials.


Sign in / Sign up

Export Citation Format

Share Document