tool path optimization
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 11 (7) ◽  
pp. 3259
Author(s):  
Eunyoung Heo ◽  
Namhyun Yoo

In numerical control (NC)-based machining, NC data-based tool paths affect both quality and productivity. NC data are generated according to cutting conditions. However, NC data causing excessive cutting load can accelerate tool wear and even result in tool damage. In the opposite case, increasing machining time can affect productivity. NC data can influence surface quality from the perspective of cutting dynamics according to machine tool–material-tool combination. There have been a lot of studies on tool-path optimization. However, it is impossible to perfectly predict cutting dynamics such as tool wear, material non-uniformity, chatter, and spindle deformation. In fact, such prediction-based tool-path optimization can cause errors. Therefore, this study attempts to synchronize spindle load and NC data and uniformize the machining load through the analysis of stored data using digital-twin technology, which stores and manages machining history. Uniformizing machining load can reduce rapid traverse in the event of no load, feed rate in an overload area, and shock on a tool when the tool and material are met by adding approach feed. Analyzing results of the attempts proposed in this paper, the chatter was completely removed in the machining with D100 and D16, although some chatter remained in the machining with D25 and D16R3 tools. In addition, the processing time could be reduced from a minimum of 7% to a maximum of 50% after optimization.


Author(s):  
Lu Lei ◽  
Jiong Zhang ◽  
Xiaoqing Tian ◽  
Jiang Han ◽  
Hao Wang

Abstract This paper develops a tool path optimization method for robot surface machining by sampling-based motion planning algorithms. In the surface machining process, the tool-tip position needs to strictly follow the tool path curve and the posture of the tool axis should be limited in a certain range. But the industrial robot has at least six degrees of freedom (Dof) and has redundant Dofs for surface machining. Therefore, the tool motion of surface machining can be optimized using the redundant Dofs considering the tool path constraints and limits of the tool axis orientation. Due to the complexity of the problem, the sampling-based motion planning method has been chosen to find the solution, which randomly explores the configuration space of the robot and generates a discrete path of valid robot state. During the solving process, the joint space of the robot is chosen as the configuration space of the problem and the constraints for the tool-tip following requirements are in the operation space. Combined with general collision checking, the limited region of the tool axis vector is used to verify the state's validity of the configuration space. In the optimization process, the sum of path length of each joint of the robot is set as the optimization objective. The algorithm is developed based on the open motion planning library (OMPL) which contains the state-of-the-art sampling-based motion planners. Finally, two examples are used to demonstrate the effectiveness and optimality of the method.


2020 ◽  
Vol 54 ◽  
pp. 328-336
Author(s):  
Ahmad Farhadi ◽  
Lin Gu ◽  
Wansheng Zhao ◽  
K.P. Rajurkar

Sign in / Sign up

Export Citation Format

Share Document