scholarly journals Simple groups with the same prime graph as 2Dn(q)

2015 ◽  
Vol 98 (112) ◽  
pp. 251-263
Author(s):  
Behrooz Khosravi ◽  
A. Babai

In 2006, Vasil'ev posed the problem: Does there exist a positive integer k such that there are no k pairwise nonisomorphic nonabelian finite simple groups with the same graphs of primes? Conjecture: k = 5. In 2013, Zvezdina, confirmed the conjecture for the case when one of the groups is alternating. We continue this work and determine all nonabelian simple groups having the same prime graphs as the nonabelian simple group 2Dn(q).

2019 ◽  
Vol 18 (04) ◽  
pp. 1950070
Author(s):  
Ali Mahmoudifar

It is proved that some finite simple groups are quasirecognizable by prime graph. In [A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups [Formula: see text] and [Formula: see text], J. Algebra Appl. 14(1) (2015) 12pp], the authors proved that if [Formula: see text] is a prime number and [Formula: see text], then there exists a natural number [Formula: see text] such that for all [Formula: see text], the simple group [Formula: see text] (where [Formula: see text] is a linear or unitary simple group) is quasirecognizable by prime graph. Also[Formula: see text] in that paper[Formula: see text] the author posed the following conjecture: Conjecture. For every prime power [Formula: see text] there exists a natural number [Formula: see text] such that for all [Formula: see text] the simple group [Formula: see text] is quasirecognizable by prime graph. In this paper [Formula: see text] as the main theorem we prove that if [Formula: see text] is a prime power and satisfies some especial conditions [Formula: see text] then there exists a number [Formula: see text] associated to [Formula: see text] such that for all [Formula: see text] the finite linear simple group [Formula: see text] is quasirecognizable by prime graph. Finally [Formula: see text] by a calculation via a computer program [Formula: see text] we conclude that the above conjecture is valid for the simple group [Formula: see text] where [Formula: see text] [Formula: see text] is an odd number and [Formula: see text].


1998 ◽  
Vol 58 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G which does not contain the identity of G, we use Cay(G, S) to denote the Cayley graph of G with respect to S. For a positive integer m, the group G is called a (connected) m-DCI-group if for any (connected) Cayley graphs Cay(G, S) and Cay(G, T) of out-valency at most m, Sσ = T for some σ ∈ Aut(G) whenever Cay(G, S) ≅ Cay(G, T). Let p(G) be the smallest prime divisor of |G|. It was previously shown that each finite group G is a connected m-DCI-group for m ≤ p(G) − 1 but this is not necessarily true for m = p(G). This leads to a natural question: which groups G are connected p(G)-DCI-groups? Here we conjecture that the answer of this question is positive for finite simple groups, that is, finite simple groups are all connected 2-DCI-groups. We verify this conjecture for the linear groups PSL(2, q). Then we prove that a nonabelian simple group G is a 2-DCI-group if and only if G = A5.


2005 ◽  
Vol 12 (03) ◽  
pp. 431-442 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
A. R. Zokayi ◽  
M. R. Darafsheh

If G is a finite group, we define its prime graph Γ(G) as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge, denoted by p~q, if there is an element in G of order pq. Assume [Formula: see text] with primes p1<p2<⋯<pkand natural numbers αi. For p∈π(G), let the degree of p be deg (p)=|{q∈π(G)|q~p}|, and D(G):=( deg (p1), deg (p2),…, deg (pk)). In this paper, we prove that if G is a finite group such that D(G)=D(M) and |G|=|M|, where M is one of the following simple groups: (1) sporadic simple groups, (2) alternating groups Apwith p and p-2 primes, (3) some simple groups of Lie type, then G≅M. Moreover, we show that if G is a finite group with OC (G)={29.39.5.7, 13}, then G≅S6(3) or O7(3), and finally, we show that if G is a finite group such that |G|=29.39.5.7.13 and D(G)=(3,2,2,1,0), then G≅S6(3) or O7(3).


2009 ◽  
Vol 08 (01) ◽  
pp. 105-114 ◽  
Author(s):  
LIANGCAI ZHANG ◽  
WUJIE SHI

Let G be a finite nonabelian group and associate a disoriented noncommuting graph ∇(G) with G as follows: the vertex set of ∇(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, J. G. Thompson gave the following conjecture.Thompson's Conjecture If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ≅ M, where N(G) denotes the set of the sizes of the conjugacy classes of G.In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture in [1] as follows.AAM's Conjecture Let M be a finite nonabelian simple group and G a group such that ∇(G)≅ ∇ (M). Then G ≅ M.Even though both of the two conjectures are known to be true for all finite simple groups with nonconnected prime graphs, it is still unknown for almost all simple groups with connected prime graphs. In the present paper, we prove that the second conjecture is true for the projective special unitary simple group U4(7).


2015 ◽  
Vol 18 (5) ◽  
Author(s):  
Mariya A. Grechkoseeva ◽  
Andrey V. Vasil'ev

AbstractFinite groups are said to be isospectral if they have the same sets of element orders. A finite nonabelian simple group


Author(s):  
Hossein Moradi ◽  
Mohammad Reza Darafsheh ◽  
Ali Iranmanesh

Let G be a finite group. The prime graph &Gamma;(G) of G is defined as follows: The set of vertices of&nbsp;&Gamma;(G) is the set of prime divisors of |G| and two distinct vertices p and p' are connected in &Gamma;(G), whenever G has an element of order pp'. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with &Gamma;(G)=&Gamma;(P), G has a composition factor isomorphic to P. In&nbsp;[4] proved finite simple groups 2Dn(q), where&nbsp;n&nbsp;&ne; 4k are quasirecognizable by prime graph. Now in this paper we discuss the quasirecognizability by prime graph of the simple groups 2D2k(q), where&nbsp;k &ge; 9 and q is a prime power less than 105.


2016 ◽  
Vol 15 (09) ◽  
pp. 1650163
Author(s):  
Tian-Ze Li ◽  
Yan-Jun Liu

Let [Formula: see text] be a prime. The Sylow [Formula: see text]-number of a finite group [Formula: see text], which is the number of Sylow [Formula: see text]-subgroups of [Formula: see text], is called solvable if its [Formula: see text]-part is congruent to [Formula: see text] modulo [Formula: see text] for any prime [Formula: see text]. P. Hall showed that solvable groups only have solvable Sylow numbers, and M. Hall showed that the Sylow [Formula: see text]-number of a finite group is the product of two kinds of factors: of prime powers [Formula: see text] with [Formula: see text] (mod [Formula: see text]) and of the number of Sylow [Formula: see text]-subgroups in certain finite simple groups (involved in [Formula: see text]). These classical results lead to the investigation of solvable Sylow numbers of finite simple groups. In this paper, we show that a finite nonabelian simple group has only solvable Sylow numbers if and only if it is isomorphic to [Formula: see text] for [Formula: see text] a Mersenne prime.


2014 ◽  
Vol 91 (2) ◽  
pp. 227-240 ◽  
Author(s):  
TIMOTHY C. BURNESS ◽  
ELISA COVATO

AbstractLet $G$ be a finite group, let ${\it\pi}(G)$ be the set of prime divisors of $|G|$ and let ${\rm\Gamma}(G)$ be the prime graph of $G$. This graph has vertex set ${\it\pi}(G)$, and two vertices $r$ and $s$ are adjacent if and only if $G$ contains an element of order $rs$. Many properties of these graphs have been studied in recent years, with a particular focus on the prime graphs of finite simple groups. In this note, we determine the pairs $(G,H)$, where $G$ is simple and $H$ is a proper subgroup of $G$ such that ${\rm\Gamma}(G)={\rm\Gamma}(H)$.


2015 ◽  
Vol 3 ◽  
Author(s):  
MICHAEL LARSEN ◽  
PHAM HUU TIEP

Let $w_{1}$ and $w_{2}$ be nontrivial words in free groups $F_{n_{1}}$ and $F_{n_{2}}$, respectively. We prove that, for all sufficiently large finite nonabelian simple groups $G$, there exist subsets $C_{1}\subseteq w_{1}(G)$ and $C_{2}\subseteq w_{2}(G)$ such that $|C_{i}|=O(|G|^{1/2}\log ^{1/2}|G|)$ and $C_{1}C_{2}=G$. In particular, if $w$ is any nontrivial word and $G$ is a sufficiently large finite nonabelian simple group, then $w(G)$ contains a thin base of order $2$. This is a nonabelian analog of a result of Van Vu [‘On a refinement of Waring’s problem’, Duke Math. J. 105(1) (2000), 107–134.] for the classical Waring problem. Further results concerning thin bases of $G$ of order $2$ are established for any finite group and for any compact Lie group $G$.


2012 ◽  
Vol 19 (03) ◽  
pp. 553-562 ◽  
Author(s):  
Huaiyu He ◽  
Wujie Shi

In this paper, we remedy some errors in the paper [17]; in particular, for any non-abelian finite simple group G other than Alt n such that n-2, n-1 and n are not primes, we prove that for each r ∈ π(G), there always exists s ∈ π(G) which is non-adjacent to r in the Gruenberg-Kegel graph of G. Applications of these results to the recognition problem of some finite simple groups by spectrum are also considered.


Sign in / Sign up

Export Citation Format

Share Document