superpixel segmentation
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 153)

H-INDEX

17
(FIVE YEARS 6)

2022 ◽  
Vol 12 (2) ◽  
pp. 602
Author(s):  
Weihua Li ◽  
Zhuang Miao ◽  
Jing Mu ◽  
Fanming Li

Superpixel segmentation has become a crucial pre-processing tool to reduce computation in many computer vision applications. In this paper, a superpixel extraction algorithm based on a seed strategy of contour encoding (SSCE) for infrared images is presented, which can generate superpixels with high boundary adherence and compactness. Specifically, SSCE can solve the problem of superpixels being unable to self-adapt to the image content. First, a contour encoding map is obtained by ray scanning the binary edge map, which ensures that each connected domain belongs to the same homogeneous region. Second, according to the seed sampling strategy, each seed point can be extracted from the contour encoding map. The initial seed set, which is adaptively scattered based on the local structure, is capable of improving the capability of boundary adherence, especially for small regions. Finally, the initial superpixels limited by the image contour are generated by clustering and refined by merging similar adjacent superpixels in the region adjacency graph (RAG) to reduce redundant superpixels. Experimental results on a self-built infrared dataset and the public datasets BSD500 and 3Dircadb demonstrate the generalization ability in grayscale and medical images, and the superiority of the proposed method over several state-of-the-art methods in terms of accuracy and compactness.


Author(s):  
Jingjing Wang ◽  
Zhenye Luan ◽  
Zishu Yu ◽  
Jinwen Ren ◽  
Jun Gao ◽  
...  

2022 ◽  
Vol 71 ◽  
pp. 103207
Author(s):  
Dongxiu Li ◽  
Shuaizheng Chen ◽  
Chaolu Feng ◽  
Wei Li ◽  
Kun Yu

2021 ◽  
Author(s):  
Jingjing wang ◽  
Zhenye Luan ◽  
Zishu Yu ◽  
Jinwen Ren ◽  
Weiwei Yue ◽  
...  

2021 ◽  
Author(s):  
Jiaxin Yu ◽  
Florian Wellmann ◽  
Simon Virgo ◽  
Marven von Domarus ◽  
Mingze Jiang ◽  
...  

Training data is the backbone of developing either Machine Learning (ML) models or specific deep learning algorithms. The paucity of well-labeled training image data has significantly impeded the applications of ML-based approaches, especially the development of novel Deep Learning (DL) methods like Convolutional Neural Networks (CNNs) in mineral thin section images identification. However, image annotation, especially pixel-wise annotation is always a costly process. Manually creating dense semantic labels for rock thin section images has been long considered as an unprecedented challenge in view of the ubiquitous variety and complexity of minerals in thin sections. To speed up the annotation, we propose a human-computer collaborative pipeline in which superpixel segmentation is used as a boundary extractor to avoid hand delineation of instances boundaries. The pipeline consists of two steps: superpixel segmentation using MultiSLIC, and superpixel labeling through a specific-designed tool. We use a cutting-edge methodology Virtual Petroscopy (ViP) for automatic image acquisition. Bentheimer sandstone sample is used to conduct performance testing of the pipeline. Three standard error metrics are used to evaluate the performance of MultiSLIC. The result indicates that MultiSLIC is able to extract compact superpixels with satisfying boundary adherence given multiple input images. According to our test results, large and complex thin section images with pixel-wisely accurate labels can be annotated with the labeling tool more efficiently than in a conventional, purely manual work, and generate data of high quality.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6374
Author(s):  
Xianyi Chen ◽  
Xiafu Peng ◽  
Sun’an Wang

Superpixel segmentation is one of the key image preprocessing steps in object recognition and detection methods. However, the over-segmentation in the smoothly connected homogenous region in an image is the key problem. That would produce redundant complex jagged textures. In this paper, the density peak clustering will be used to reduce the redundant superpixels and highlight the primary textures and contours of the salient objects. Firstly, the grid pixels are extracted as feature points, and the density of each feature point will be defined. Secondly, the cluster centers are extracted with the density peaks. Finally, all the feature points will be clustered by the density peaks. The pixel blocks, which are obtained by the above steps, are superpixels. The method is carried out in the BSDS500 dataset, and the experimental results show that the Boundary Recall (BR) and Achievement Segmentation Accuracy (ASA) are 95.0% and 96.3%, respectively. In addition, the proposed method has better performance in efficiency (30 fps). The comparison experiments show that not only do the superpixel boundaries have good adhesion to the primary textures and contours of the salient objects, but they can also effectively reduce the redundant superpixels in the homogeneous region.


Sign in / Sign up

Export Citation Format

Share Document