mass accumulation rate
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Victoria Holly Liberty Winton

<p>Each summer the waters in McMurdo Sound (Lat. 77.5ºS; Long. 165ºE), south-western (SW) Ross Sea encounter vast phytoplankton blooms. This phenomenon is stimulated by the addition of bio-available iron (Fe) to an environment where phytoplankton growth is otherwise Fe-limited. One possible source of such Fe is aeolian sand and dust (ASD) which accumulates on sea ice and is released into the ocean during the summer melt season. The amount of bio-available Fe (i.e. the amount of Fe immedately accessible to phytoplankton) potentially supplied to the ocean by ASD depends on a number of factors including; the ASD flux into the ocean, its particle size distribution and Fe content. However, none of these parameters are well constrained in the SW Ross Sea region and, as a result, the significance of this Fe source in the biogeochemical cycle of phytoplankton growth remains to be quantified. This study focuses on an area (7400 km²) of Southern McMurdo Sound, one of the few areas where direct sampling of ASD that has accumulated on sea ice is possible. To evaluate the flux and solubility of Fe contained in ASD into McMurdo Sound, the mass accumulation rate and particle size of 70 surface snow samples and 3 shallow (3 m) firn cores from the nearby McMurdo Ice Shelf covering the period 2000 - 2008 have been analysed. Selected samples were also measured for total and soluble Fe, Sr and Nd isotopic ratios and mineralogy as a guide to Fe-fertilisation potential and provenance, respectively. Mass and particle size data show an exponential decrease in mass accumulation rate (from 26.00 g m⁻² yr⁻¹ to 0.70 g m⁻² yr⁻¹) and a decrease in modal particle size (from 130 to 69 μm) over a distance of 120 km from Southern McMurdo Sound northwards to Granite Harbour. Both these trends are consistent with ASD being dispersed northwards across the sea ice by southerly storms from an area of the McMurdo Ice Shelf, where submarine freezing and surface ablation have resulted in a surface covered with debris from the sea floor, known as the 'dirty ice' or 'debris bands' (Lat. 77.929ºS; Long. 165.505ºE) in Southern McMurdo Sound. This assertion is further supported by the Sr and Nd isotopic signature of ASD matching local source rocks and the presence of vesicular glass of Southern McMurdo Sound in all samples which also points to the debris bands as the origin of ASD in McMurdo Sound. Bio-available Fe is extremely difficult to quantify hence Fe solubility was used as an approximation in this thesis. Analysis of both total (i.e. particulate and soluble) and the percentage of soluble Fe in the 0.4 - 10 μm dust size fraction (i.e. the fraction most likely to become bio-available) by solution ICP-MS shows a narrow range of values; 3.84 ± 1.99 wt % and 9.42 ± 0.70 % respectively. Combining these values with mass accumulation rate estimates for the particles 0.4 - 10 μm in size, gives an annual soluble Fe flux for the region 500 km² north of the debris bands in McMurdo Sound of 0.55 mg m⁻² yr⁻¹ (9.89 μmol m⁻² yr⁻¹), with spatial variability largely determined by differences in mass accumulation rate. These fluxes are at least an order of magnitude greater than predicted in global dust deposition models for the Southern Ocean and measured in snow samples from East Antarctica. Furthermore, these values exceed the Fe threshold, estimated as 0.2 nM (Boyd and Abraham, 2001), required for phytoplankton growth following the simple dust-biota model of Boyd et al. (2010) and assuming the release of captured ASD in snow is instantaneous. Whilst not constrained in the present study, ASD sourced from the debris bands may be sufficiently widely dispersed, particularly during storm years, to contribute to Fe-fertilisation up to 1200 km from Southern McMurdo Sound. Short, ~10 year long, firn core records of mass accumulation and methylsuphonate concentration, a proxy for phytoplankton productivity, shows a close correspondence between the two during particularly stormy years. Whilst not demonstrating a cause-and-effect relationship, this observation suggests coastal ice cores may contain an important record of the interplay between climate, dust supply, Fe-fertilisation of near shore waters and phytoplankton productivity on decadal and longer timescales.</p>


2021 ◽  
Author(s):  
◽  
Victoria Holly Liberty Winton

<p>Each summer the waters in McMurdo Sound (Lat. 77.5ºS; Long. 165ºE), south-western (SW) Ross Sea encounter vast phytoplankton blooms. This phenomenon is stimulated by the addition of bio-available iron (Fe) to an environment where phytoplankton growth is otherwise Fe-limited. One possible source of such Fe is aeolian sand and dust (ASD) which accumulates on sea ice and is released into the ocean during the summer melt season. The amount of bio-available Fe (i.e. the amount of Fe immedately accessible to phytoplankton) potentially supplied to the ocean by ASD depends on a number of factors including; the ASD flux into the ocean, its particle size distribution and Fe content. However, none of these parameters are well constrained in the SW Ross Sea region and, as a result, the significance of this Fe source in the biogeochemical cycle of phytoplankton growth remains to be quantified. This study focuses on an area (7400 km²) of Southern McMurdo Sound, one of the few areas where direct sampling of ASD that has accumulated on sea ice is possible. To evaluate the flux and solubility of Fe contained in ASD into McMurdo Sound, the mass accumulation rate and particle size of 70 surface snow samples and 3 shallow (3 m) firn cores from the nearby McMurdo Ice Shelf covering the period 2000 - 2008 have been analysed. Selected samples were also measured for total and soluble Fe, Sr and Nd isotopic ratios and mineralogy as a guide to Fe-fertilisation potential and provenance, respectively. Mass and particle size data show an exponential decrease in mass accumulation rate (from 26.00 g m⁻² yr⁻¹ to 0.70 g m⁻² yr⁻¹) and a decrease in modal particle size (from 130 to 69 μm) over a distance of 120 km from Southern McMurdo Sound northwards to Granite Harbour. Both these trends are consistent with ASD being dispersed northwards across the sea ice by southerly storms from an area of the McMurdo Ice Shelf, where submarine freezing and surface ablation have resulted in a surface covered with debris from the sea floor, known as the 'dirty ice' or 'debris bands' (Lat. 77.929ºS; Long. 165.505ºE) in Southern McMurdo Sound. This assertion is further supported by the Sr and Nd isotopic signature of ASD matching local source rocks and the presence of vesicular glass of Southern McMurdo Sound in all samples which also points to the debris bands as the origin of ASD in McMurdo Sound. Bio-available Fe is extremely difficult to quantify hence Fe solubility was used as an approximation in this thesis. Analysis of both total (i.e. particulate and soluble) and the percentage of soluble Fe in the 0.4 - 10 μm dust size fraction (i.e. the fraction most likely to become bio-available) by solution ICP-MS shows a narrow range of values; 3.84 ± 1.99 wt % and 9.42 ± 0.70 % respectively. Combining these values with mass accumulation rate estimates for the particles 0.4 - 10 μm in size, gives an annual soluble Fe flux for the region 500 km² north of the debris bands in McMurdo Sound of 0.55 mg m⁻² yr⁻¹ (9.89 μmol m⁻² yr⁻¹), with spatial variability largely determined by differences in mass accumulation rate. These fluxes are at least an order of magnitude greater than predicted in global dust deposition models for the Southern Ocean and measured in snow samples from East Antarctica. Furthermore, these values exceed the Fe threshold, estimated as 0.2 nM (Boyd and Abraham, 2001), required for phytoplankton growth following the simple dust-biota model of Boyd et al. (2010) and assuming the release of captured ASD in snow is instantaneous. Whilst not constrained in the present study, ASD sourced from the debris bands may be sufficiently widely dispersed, particularly during storm years, to contribute to Fe-fertilisation up to 1200 km from Southern McMurdo Sound. Short, ~10 year long, firn core records of mass accumulation and methylsuphonate concentration, a proxy for phytoplankton productivity, shows a close correspondence between the two during particularly stormy years. Whilst not demonstrating a cause-and-effect relationship, this observation suggests coastal ice cores may contain an important record of the interplay between climate, dust supply, Fe-fertilisation of near shore waters and phytoplankton productivity on decadal and longer timescales.</p>


2021 ◽  
Vol 6 (2) ◽  
pp. 69-82
Author(s):  
A. A. Paraskiv ◽  
N. N. Tereshchenko ◽  
V. Yu. Proskurnin ◽  
O. D. Chuzhikova-Proskurnina

The Sevastopol Bay located in the northern Black Sea was exposed to radioactive contamination by anthropogenic radionuclides, inter alia 238,239+240Pu, and to other types of anthropogenic load. One of them was the construction of breakwaters at the bay mouth in 1975–1986, which resulted in a change in the hydrological regime. The aim of this work was to assess the change in 238Pu and 239+240Pu sedimentation fluxes into the bottom sediments of the Sevastopol Bay mouth in the period before and after the Chernobyl NPP accident (1962–1986 and 1986–2013, respectively). Plutonium in sediments was determined by the radiochemical method, followed by measurement of the activity of radioisotopes with an alpha spectrometer. The sedimentation rate was defined by geochronological dating of sediment layers, accessing the change in 238Pu/239+240Pu activity ratio in the bottom sediment core. Then, the mass accumulation rate in the bottom sediments was calculated. As established, in the period after 1986, the mean annual sedimentation rate and mass accumulation rate in the bay mouth increased by 63 and 70 %, respectively. Assessment of 238,239+240Pu sedimentation fluxes during two research periods showed as follows: after 1986, 238Pu and 239+240Pu fluxes into the bottom sediments increased by 150 and 49 %, respectively. The increased 238Pu percentage in plutonium sedimentation flux after 1986 indicates Chernobyl origin of plutonium in the bottom sediment layers above 11 cm. In the post-Chernobyl period, the cumulative effect of an increase in 238,239+240Pu sedimentation flux into the bay mouth results both from an increase in the radioactive fallout intensity after the Chernobyl NPP accident and an effect of breakwaters on the regime of sedimentation processes in the water area (an increase in the mass accumulation rate).


Author(s):  
Zoran M. Perić ◽  
Slobodan B. Marković ◽  
Anca Avram ◽  
Alida Timar-Gabor ◽  
Christian Zeeden ◽  
...  

2017 ◽  
Vol 14 (13) ◽  
pp. 3275-3285 ◽  
Author(s):  
Thomas Steinsberger ◽  
Martin Schmid ◽  
Alfred Wüest ◽  
Robert Schwefel ◽  
Bernhard Wehrli ◽  
...  

Abstract. The flux of reduced substances, such as methane and ammonium, from the sediment to the bottom water (Fred) is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents fluxes based on sediment porewater measurements from different water depths of five deep lakes of differing trophic states. In meso- to eutrophic lakes Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR) of the sediments. TOC-MAR and thus Fred in eutrophic lakes decreased systematically with increasing mean hypolimnion depth (zH), suggesting that high oxygen concentrations in the deep waters of lakes were essential for the extent of organic matter mineralization leaving a smaller fraction for anaerobic degradation and thus formation of reduced compounds. Consequently, Fred was low in the 310 m deep meso-eutrophic Lake Geneva, with high O2 concentrations in the hypolimnion. By contrast, seasonal anoxic conditions enhanced Fred in the deep basin of oligotrophic Lake Aegeri. As TOC-MAR and zH are based on more readily available data, these relationships allow estimating the areal O2 consumption rate by reduced compounds from the sediments where no direct flux measurements are available.


2017 ◽  
Author(s):  
Thomas Steinsberger ◽  
Martin Schmid ◽  
Alfred Wüest ◽  
Robert Schwefel ◽  
Bernhard Wehrli ◽  
...  

Abstract. The flux of reduced substances from the sediment to the bottom water (Fred) is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents sediment porewater measurements at different water depths from five deep lakes of differing trophic states. Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR) measured in the sediments. In eutrophic lakes Fred decreased systematically with increasing mean hypolimnion depth (zH). In Lake Baldegg, both TOC-MAR and Fred increased with depth due to sediment focusing. Temporarily anoxic conditions increased Fred even in the oligotrophic Lake Aegeri, while Fred was surprisingly low in the 310 m deep but eutrophic Lake Geneva. As TOC-MAR and zH are based on more commonly available data sets, these relationships provide an estimate for the O2 consumption by Fred, where no direct flux measurements are available.


2016 ◽  
Vol 34 (11) ◽  
pp. 1161-1167 ◽  
Author(s):  
Mark M Stevens ◽  
Cecile L Maire ◽  
Nigel Chou ◽  
Mark A Murakami ◽  
David S Knoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document