Oceanology
Latest Publications


TOTAL DOCUMENTS

1592
(FIVE YEARS 285)

H-INDEX

18
(FIVE YEARS 2)

Published By Pleiades Publishing

1531-8508, 0001-4370

Oceanology ◽  
2021 ◽  
Author(s):  
A. I. Ginzburg ◽  
A. G. Kostianoy ◽  
I. V. Serykh ◽  
S. A. Lebedev

Abstract To study the nature of climate change in the hydrometeorological parameters of the Black and Azov Seas—surface air temperature (SAT), sea surface temperature (SST), ice cover, and sea level—under conditions of ongoing global warming, we used reanalyses and remote sensing data, as well as information from known publications of recent years. It was found that against an increase in SAT over the Black–Azov Sea region (+0.053°C/year in 1980–2020) and SST of the Black Sea (+0.052°C/year in 1982–2020), the values of these parameters in the 2000s differ significantly from those in the 1980s–1990s: the maximum average monthly summer and minimum average monthly winter temperatures have increased, as well as the number of mild winters. The average annual SST of the Black Sea, which practically did not exceed 15°C in the 1980s–early 1990s, has exceeded 16°C in most cases since 2010 (maximum 16.71°C in 2018). In the 2010s, the average monthly winter minima, with the exception of the winters of 2011/2012 and 2016/2017, did not fall below 8°С. A consequence of the increase in winter temperatures was a decrease in the ice concentration in the Sea of Azov (the trend of the mean monthly concentration is –1.2%/10 years). From about 2004–2010 in the Black Sea and since 2004 in the Sea of Azov, the tendency towards increase in their levels (on average) has been replaced by a slight decrease, so that the average positive trends for the period 1993–2020 (+0.32 ± 0.16 cm/year in the Black Sea and +0.21 ± 0.05 cm/year in the Sea of Azov) were approximately 2.5 times less than in 1993–2012. The reason for this decrease in levels (on average) in the last 10–15 years was apparently a decrease in the incoming part of the freshwater balance of both seas, which is indirectly confirmed by the observed increase in salinity of their waters.


Oceanology ◽  
2021 ◽  
Author(s):  
I. P. Medvedev

Abstract Based on the analysis of long series of monthly mean sea level values from the database of the PSMSL and ESIMO portals, we obtained estimates of the mean and extreme amplitudes of seasonal oscillations. The mean amplitude of annual sea level oscillations in the White Sea is 7 cm, in the Barents Sea is 9–10 cm, in the Kara Sea, is 8–9 cm, in the Laptev Sea, is 10–11 cm, in the East Siberian and Chukchi seas is 13–14 cm. In the estuarine areas of seas, the amplitude of annual oscillations increases, and the semiannual, third-annual, and quarter-annual components appear in the sea level spectra. They are formed due to the asymmetry of the seasonal sea level variation with a sharp maximum during the flood period in June. Interannual changes in the amplitude of seasonal oscillations were identified and estimates of their extreme values were obtained. In some years, the amplitude of seasonal oscillations reaches 50 cm in the Yenisei Gulf and Gulf of Ob, 60 cm near the mouth of the Lena River, and 75 cm at the mouth of the Olenek River.


Oceanology ◽  
2021 ◽  
Author(s):  
N. O. Sorokhtin ◽  
N. E. Kozlov

Abstract The study of the geodynamic evolution of the Baltic Shield showed that the melts of diamondiferous kimberlites and related rocks were formed due to the pulling of “heavy” ferruginous sediments of the Early Proterozoic into subduction zones beneath the Archean cratons. Later, during the Neoproterozoic and Paleozoic stages of rifting, melts conserved in the lower crust and subcrustal lithosphere were able to penetrate into the near-surface zones of the crust and form magmatic complexes of alkaline–ultramafic and kimberlite magmatism. The authors showed that diamondiferous kimberlite and lamproite explosion pipes, as well as related carbonatite and alkaline–ultramafic intrusions, are mainly located above the subduction zones of the Svecofennian (Karelian) plates, which functioned about 2.0–1.8 Ga ago. At the same time, alkaline ultramafic intrusions and (sodium) carbonatites are located closest to the front of the subduction zone of Proterozoic plates (from 100 to 200–300 km). Then (at a distance of 200 to 400 km), there is a zone of location of calcite carbonatites and melilitites, and sometimes nondiamondiferous kimberlites. Diamondiferous kimberlite and lamproite diatremes are located farther than other similar formations approximately 300 to 600–650 km from its front. Such a regular spatial arrangement of magmatic complexes of a single series unambiguously indicates a change in depth of their origin. The farther from the surface boundary of the paleosubduction zone the magmatic bodies are located, the deeper the facies representing them.


Oceanology ◽  
2021 ◽  
Vol 61 (5) ◽  
pp. 645-661
Author(s):  
A. B. Demidov ◽  
V. I. Gagarin ◽  
E. V. Eremeeva ◽  
V. A. Artemiev ◽  
A. A. Polukhin ◽  
...  

Oceanology ◽  
2021 ◽  
Vol 61 (5) ◽  
pp. 625-631
Author(s):  
A. A. Polukhin ◽  
M. V. Flint ◽  
I. B. Belikov ◽  
G. V. Gusak ◽  
U. A. Kazakova ◽  
...  

Abstract The values and direction of carbon dioxide flux in the area of the continental slope in the north of the Kara Sea (St. Anna Trough) are calculated based on field studies in 2020 within the Siberian Arctic Sea Ecosystems program. The existence of a stable frontal zone in this area has been confirmed, which is formed by an alongslope current and limits the northward spread of surface waters freshened by the continental runoff. The simultaneous analysis of the carbonate system in the upper sea layer and the CO2 concentration in the surface air layer shows the CO2 flux with a rate of 0.2 to 22 mmol/m2 day to be directed from the atmosphere into the water in the area of the outer shelf, which is affected by the river runoff, and in the area of the continental slope, which is beyond this effect. The highest rates of CO2 absorption by the sea surface layer are localized above the continental slope. Local processes in the area of the slope frontal zone determine the CO2 emission into the atmosphere with a rate of 0.34 mmol/m2 day.


Oceanology ◽  
2021 ◽  
Vol 61 (5) ◽  
pp. 727-735
Author(s):  
A. S. Ulyantsev ◽  
N. A. Prokuda ◽  
E. A. Streltzova ◽  
N. A. Belyaev ◽  
E. A. Romankevich

Sign in / Sign up

Export Citation Format

Share Document