capillary gel electrophoresis
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 30)

H-INDEX

44
(FIVE YEARS 3)

2021 ◽  
Vol 22 (22) ◽  
pp. 12611
Author(s):  
Susan Schröpfer ◽  
Henryk Flachowsky

The use of the novel CRISPR/Cas12a system is advantageous, as it expands the possibilities for genome editing (GE) applications due to its different features compared to the commonly used CRISPR/Cas9 system. In this work, the CRISPR/Cas12a system was applied for the first time to apple to investigate its general usability for GE applications. Efficient guide RNAs targeting different exons of the endogenous reporter gene MdPDS, whose disruption leads to the albino phenotype, were pre-selected by in vitro cleavage assays. A construct was transferred to apple encoding for a CRISPR/Cas12a system that simultaneously targets two loci in MdPDS. Using fluorescent PCR capillary electrophoresis and amplicon deep sequencing, all identified GE events of regenerated albino shoots were characterized as deletions. Large deletions between the two neighboring target sites were not observed. Furthermore, a chimeric composition of regenerates and shoots that exhibited multiple GE events was observed frequently. By comparing both analytical methods, it was shown that fluorescent PCR capillary gel electrophoresis is a sensitive high-throughput genotyping method that allows accurate predictions of the size and proportion of indel mutations for multiple loci simultaneously. Especially for species exhibiting high frequencies of chimerism, it can be recommended as a cost-effective method for efficient selection of homohistont GE lines.


2021 ◽  
Vol 116 (3) ◽  
pp. e416-e417
Author(s):  
Shaihla A. Khan ◽  
Sandeep K. Rajput ◽  
Elizabeth A. Jannaman ◽  
Benjamin B. Goheen ◽  
Laura Reed ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Léa Chuzel ◽  
Samantha L. Fossa ◽  
Madison L. Boisvert ◽  
Samanta Cajic ◽  
René Hennig ◽  
...  

Abstract Background Sulfate modification of N-glycans is important for several biological functions such as clearance of pituitary hormones or immunoregulation. Yet, the prevalence of this N-glycan modification and its functions remain largely unexplored. Characterization of N-glycans bearing sulfate modifications is hampered in part by a lack of enzymes that enable site-specific detection of N-glycan sulfation. In this study, we used functional metagenomic screening to identify enzymes that act upon sulfated N-acetylglucosamine (GlcNAc). Using multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF) -based glycoanalysis we proved their ability to act upon GlcNAc-6-SO4 on N-glycans. Results Our screen identified a sugar-specific sulfatase that specifically removes sulfate from GlcNAc-6-SO4 when it is in a terminal position on an N-glycan. Additionally, in the absence of calcium, this sulfatase binds to the sulfated glycan but does not remove the sulfate group, suggesting it could be used for selective isolation of sulfated N-glycans. Further, we describe isolation of a sulfate-dependent hexosaminidase that removes intact GlcNAc-6-SO4 (but not asulfated GlcNAc) from a terminal position on N-glycans. Finally, the use of these enzymes to detect the presence of sulfated N-glycans by xCGE-LIF is demonstrated. Conclusion The present study demonstrates the feasibility of using functional metagenomic screening combined with glycoanalytics to discover enzymes that act upon chemical modifications of glycans. The discovered enzymes represent new specificities that can help resolve the presence of GlcNAc-6-SO4 in N-glycan structural analyses.


2021 ◽  
pp. 338492
Author(s):  
Csenge Filep ◽  
Marton Szigeti ◽  
Robert Farsang ◽  
Markus Haberger ◽  
Dietmar Reusch ◽  
...  

Author(s):  
Marton Szigeti ◽  
Agnes Meszaros-Matwiejuk ◽  
Dora Molnar-Gabor ◽  
Andras Guttman

AbstractIndustrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2′-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2′- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document