electromagnetic wave propagation
Recently Published Documents


TOTAL DOCUMENTS

1041
(FIVE YEARS 110)

H-INDEX

41
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Pavel Makarov ◽  
Vladimir Ustyugov ◽  
Leonid Kotov ◽  
Sergey V. Nekipelov ◽  
Viktor Sivkov

An algorithm for the numerical simulation of the propagation of electromagnetic waves in randomly inhomogeneous magnetic media by the FDTD method has been developed. The formulated algorithm is suitable for analyzing the main timing characteristics, as well as identifying the features of the propagation of various types of signals in both time-independent and time-dependent layered randomly inhomogeneous media. The simulation of the propagation of the sine pulse, sine signal and square wave in time-independent magnetic randomly inhomogeneous media with a various levels of phase contrast of two types - with a “diffuse” distribution of inhomogeneities and their “close packing” is carried out. The influence of the concentration of magnetic granules and the type of their distribution on the characteristics of the transmitted and reflected signals is revealed.


2021 ◽  
Author(s):  
Pavel Makarov ◽  
Vladimir Ustyugov ◽  
Leonid Kotov ◽  
Sergey V. Nekipelov ◽  
Viktor Sivkov

An algorithm for the numerical simulation of the propagation of electromagnetic waves in randomly inhomogeneous magnetic media by the FDTD method has been developed. The formulated algorithm is suitable for analyzing the main timing characteristics, as well as identifying the features of the propagation of various types of signals in both time-independent and time-dependent layered randomly inhomogeneous media. The simulation of the propagation of the sine pulse, sine signal and square wave in time-independent magnetic randomly inhomogeneous media with a various levels of phase contrast of two types - with a “diffuse” distribution of inhomogeneities and their “close packing” is carried out. The influence of the concentration of magnetic granules and the type of their distribution on the characteristics of the transmitted and reflected signals is revealed.


2021 ◽  
Author(s):  
Pavel Makarov ◽  
Vladimir Ustyugov ◽  
Leonid Kotov ◽  
Sergey V. Nekipelov ◽  
Viktor Sivkov

An algorithm for the numerical simulation of the propagation of electromagnetic waves in randomly inhomogeneous magnetic media by the FDTD method has been developed. The formulated algorithm is suitable for analyzing the main timing characteristics, as well as identifying the features of the propagation of various types of signals in both time-independent and time-dependent layered randomly inhomogeneous media. The simulation of the propagation of the sine pulse, sine signal and square wave in time-independent magnetic randomly inhomogeneous media with a various levels of phase contrast of two types - with a “diffuse” distribution of inhomogeneities and their “close packing” is carried out. The influence of the concentration of magnetic granules and the type of their distribution on the characteristics of the transmitted and reflected signals is revealed.


2021 ◽  
Author(s):  
Volodymyr Marchenko ◽  
Andrzej Kulak ◽  
Janusz Mlynarczyk

Abstract. The FDTD model of electromagnetic wave propagation in the Earth-ionosphere cavity was developed under assumption of axisymmetric system, solving the reduced Maxwell’s equations in a 2D spherical coordinate system. The model was validated on different conductivity profiles for the electric and magnetic field components for various locations on Earth along the meridian. The characteristic electric and magnetic altitudes, the phase velocity and attenuation rate were calculated. We compared the results of numerical and analytical calculations and found good agreement between them. The undertaken FDTD modeling enables us to analyze the Schumann resonances and the propagation of individual lightning discharges occurring at various distances from the receiver. The developed model is particularly useful when analyzing ELF measurements.


Sign in / Sign up

Export Citation Format

Share Document