hybrid stabilization
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Pushpdant Jain ◽  
Mohammed Rajik Khan

Spinal instrumentations have been designed to alleviate lower back pain and stabilize the spinal segments. The present work aims to evaluate the biomechanical effect of the proposed Hybrid Stabilization Device (HSD). Non-linear finite element model of lumbar segment L2-L4 were developed to compare the intact spine (IS) with rigid implant (RI) and hybrid stabilization device. To restrict all directional motion vertebra L4 bottom surface were kept fixed and axial compressive force of 500N with a moment of 10Nm were applied to the top surface of L2 vertebrae. The results of range of motion (ROM), intervertebral disc (IVD) pressure and strains for IVD-23 and IVD-34 were determined for flexion, extension, lateral bending and axial twist. Results demonstrated that ROM of HSD model is higher than RI and lower as compared to IS model. The predicted biomechanical parameters of the present work may be considered before clinical implementations of any implants.


2020 ◽  
Vol 28 (23) ◽  
pp. 34093
Author(s):  
Jack Hirschman ◽  
Randy Lemons ◽  
Evan Chansky ◽  
Günter Steinmeyer ◽  
Sergio Carbajo

Author(s):  
Eylül Demir ◽  
Peter Eltes ◽  
Andre PG Castro ◽  
Damien Lacroix ◽  
İhsan Toktaş

Intersomatic fusion is a very popular treatment for spinal diseases associated with intervertebral disc degeneration. The effects of three different hybrid stabilization systems on both range of motion and intradiscal pressure were investigated, as there is no consensus in the literature about the efficiency of these systems. Finite element simulations were designed to predict the variations of range of motion and intradiscal pressure from intact to implanted situations. After hybrid stabilization system implantation, L4-L5 level did not lose its motion completely, while L5-S1 had no mobility as a consequence of disc removal and fusion process. BalanC hybrid stabilization system represented higher mobility at the index level, reduced intradiscal pressure of adjacent level, but caused to increment in range of motion by 20% under axial rotation. Higher tendency by 93% to the failure was also detected under axial rotation. Dynesys hybrid stabilization system represented more restricted motion than BalanC, and negligible effects to the adjacent level. B-DYN hybrid stabilization system was the most rigid one among all three systems. It reduced intradiscal pressure and range of motion at the adjacent level except from motion under axial rotation being increased by 13%. Fracture risk of B-DYN and Dynesys Transition Optima components was low when compared with BalanC. Mobility of the adjacent level around axial direction should be taken into account in case of implantation with BalanC and B-DYN systems, as well as on the development of new designs. Having these findings in mind, it is clear that hybrid systems need to be further tested, both clinically and numerically, before being considered for common use.


Author(s):  
Moustafa Mesbah ◽  
Abdelwahed Barkaoui

Hybrid stabilization is widely performed for the surgical treatment of degenerative disk diseases. Pedicle-based hybrid stabilization intends to reduce fusion-associated drawbacks of adjacent segment degeneration, construct failure, and pseudoarthrosis. Recently, many types of pedicle-based hybrid stabilization systems have been developed and optimized, using polymeric devices as an adjunct for lumbar fusion procedures. Therefore, the purpose of this study was to evaluate the effect of new pedicle-based hybrid stabilization on bending stiffness and center of rotation at operated and adjacent levels in comparison with established semirigid and rigid devices in lumbar fusion procedures. A validated three-dimensional finite element model of the L3–S1 segments was modified to simulate postoperative changes during combined loading (moment of 7.5 N m + follower load of 400 N). Two models instrumented with pedicle-based hybrid stabilization (Dynesys Transition Optima, NFlex), semirigid system (polyetheretherketone), and rigid fixation system (titanium rod (Ti) were compared with those of the healthy and degenerated models. Contact force on the facet joint during extension increased in fusion (40 N) with an increase of bending stiffness in Dynesys and NFlex. The center of rotation shifted in posterior and cranial directions of the fused level. The centers of rotation in the lower lumbar spine is segment dependent and altered with the adopted construct. The bending stiffness was varied from 1.47 N m/° in lateral bending for the healthy model to 5.75 N m/° for the NFlex stabilization, which had the closest center of rotation, compared to the healthy center of rotation. Locations of center of rotation, stress, and strain distribution varied according to construct design and materials used. These data could help understand the biomechanical effects of current pedicle-based hybrid stabilization on the behavior of the lower lumbar spine.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ulrich J. Spiegl ◽  
Annette B. Ahrberg ◽  
Christine Anemüller ◽  
Jan-Sven Jarvers ◽  
Stefan Glasmacher ◽  
...  

Author(s):  
Pushpdant Jain ◽  
Mohammed Rajik Khan

Spinal instrumentations have been designed to alleviate lower back pain and stabilize the spinal segments. The present work aims to evaluate the biomechanical effect of the proposed Hybrid Stabilization Device (HSD). Non-linear finite element model of lumbar segment L2-L4 were developed to compare the intact spine (IS) with rigid implant (RI) and hybrid stabilization device. To restrict all directional motion vertebra L4 bottom surface were kept fixed and axial compressive force of 500N with a moment of 10Nm were applied to the top surface of L2 vertebrae. The results of range of motion (ROM), intervertebral disc (IVD) pressure and strains for IVD-23 and IVD-34 were determined for flexion, extension, lateral bending and axial twist. Results demonstrated that ROM of HSD model is higher than RI and lower as compared to IS model. The predicted biomechanical parameters of the present work may be considered before clinical implementations of any implants.


Author(s):  
Jack Hirschman ◽  
Randy Lemons ◽  
Evan Chansky ◽  
Günter Steinmeyer ◽  
Sergio Carbajo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document