Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 39)

H-INDEX

0
(FIVE YEARS 0)

Published By IGI Global

9781799880509, 9781799881032

Author(s):  
Markus Spöhrer

This chapter examines the translations and (de)stabilizations of the cochlear implant, a subcutaneous prosthesis that is subject to ethical and judicial controversies. By looking at medical, social, and scientific contexts, the CI will be described as a technical object ascribed with certain attributes providing technical stability in those contexts that treat it and practice it as a scientific fact, a “technical thing.” Scientific communities stabilize technical things by rigorously excluding attributes of the “social.” However, the CI is designed to enable participation, to “gap” the supposed “disability” of not being able to hear, attributing a certain instability to it. The chapter will theoretically and methodologically approach such processes of (de)stabilization and transformation by making use of ANT and Hans-Jörg Rheinbergers concept of technical and epistemic things. This will be illustrated by analyzing certain discourses used as illustrations for the successful communication between implanted children and their parents in practical guides for parents with deaf children.


Author(s):  
Saritha R. Shetty ◽  
Archana Upadhya

Nanotechnology is that sphere of technology that involves the participation of biology, chemistry, physics, and engineering sciences. Nanoscale science defines the chemistry and physics of structures lying in the range of 1-100 nm. Among the nanosystems researched, magnetic nanosystems are highlighted due their unique ability, which enables their targeting to specific locations on application of an external magnetic field. The exhibited property of these magnetic nanosystems being super-paramagnetism, there is no retention of magnetic property on removal of the magnetic field, thus enabling a reversion of the targeting process. For effective utilization of these nanosystems, they should be reduced to nanosizes, layered with biocompatible entities, stabilized, and functionalized. In the chapter, synthesis and functionalization and stabilization are elucidated. The biomedical applications such as targeted delivery, MRI, magnetic hyperthermia, tissue engineering, gene delivery, magnetic immunotherapy, magnetic detoxification, and nanomagnetic actuation are discussed.


Author(s):  
Dheeman Bhuyan

Heart valve prostheses are well known and can be classified in two major types or categories: biological and mechanical. Biological valves (i.e., Homografts and Heterografts) make use of animal tissue as the valving mechanism whereas mechanical valves make use of balls, disks, and other mechanical valving mechanism. Mechanical valves carry considerable risk and require lifelong medication. The design of these valves is usually done on a “one size fits all” basis, with only the diameter changing depending on the model being produced. The author seeks to present an application of additive manufacturing in the design process for mechanical valves. This is expected to provide patients with customized prostheses to match their physiology and reduce the risk associated with the implantation.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


Author(s):  
Nilmini Wickramasinghe

3D printing has developed as a modification of an old injection printer. Today, it is rapidly expanding offering novel possibilities as well as new exciting applications for various sectors including healthcare, automotive, aerospace, and defense industries. This chapter presents key application areas within the healthcare sector. In medicine, 3D printing is revolutionizing the way operations are carried out, disrupting prosthesis and implant markets as well as dentistry. The relatively new field of bioprinting has come to be because of advances with this technology. As will be discussed, numerous applications of 3D printing in healthcare relate to personalized medicine. For instance, implants or prostheses are 3D printed for a specific user's body, optimizing the technology to work for an individual, not an average user as with most mass-produced products. In addition, 3D printing has applications on the nanoscale with printing of drugs and other smaller items. Hence, 3D printing represents a disruptive technology for healthcare delivery.


Author(s):  
Kevin Warwick

In this chapter, the author describes his personal experience in experimenting as a cyborg (part biology/part technology) by having technology implanted in his body, which he lived with over a period. A look is also taken at the author's experiments into creating cyborgs by growing biological brains which are subsequently given a robot body. The experiments are dealt with in separate sections. In each case the nature of the experiment is briefly described along with the results obtained and this is followed by an indication of the experience, including personal feelings and emotions felt in and around the time of the experiments and subsequently as a result of the experiments. Although the subject can be treated scientifically from an external perspective, it is really through individual, personal experience that a true reflection can be gained on what might be possible in the future.


Author(s):  
Divya Zindani

Different biomaterials in the form of ceramics, metal alloys, composites, glasses, polymers, etc. have gained wide-range acceptance in the realm of medical sciences. Bioimplants from such biomaterials have been constructed and used widely for different clinical applications. With the continual progress, biomaterials that may be resorbed inside the body have been developed. These have done away with the major challenge of removal of an implant after it has served its intended function. Important factors are taken into consideration in design and development of implants from such biomaterials are mechanical properties, degradation rate, surface modification, rate of corrosion, biocompatibility, and non-toxicity. Given the importance of such materials in clinical applications, the chapter presents an overview of the bioresorable composites and their implants. The related properties and the functions served have been outlined briefly. Further, the challenges associated and the remedies to overcome them have also been delineated.


Author(s):  
Rajiv Borah ◽  
Ashok Kumar

This chapter includes detailed review of the research undertaken with conducting polymer (CP) based composites with chitosan (Ch) for tissue engineering till date. The beneficial role of electrically conductive biomaterials has been discussed with the possible strategies to overcome the shortcomings of CP alone through blending with Ch due to its excellent biocompatibility, biodegradability, and bioactivity. Additionally, this embodiment deals with the optimization and characterization of electrically conductive, biocompatible and biodegradable Polyaniline: Chitosan (PAni:Ch) nanocomposites as cell culture substrates for MDA-MB-231 and NIH 3T3 fibroblast in order to examine the combined effect of nanofiber structure and surface modification on cell-biomaterial interactions. The nanocomposites were further checked as a conductive scaffold for electrical stimulation of a neuronal model PC12 cell line in order to explore the potential of the materials in neural tissue engineering.


Author(s):  
T. Christy Bobby ◽  
Shwetha V. ◽  
Vijaya Madhavi

The stability of a dental implant is one of the most important aspects that decide the success rate of implant treatment. The stability is considerably affected by the strength of trabecular bone present in maxilla and mandible. Thus, finding of trabecular bone strength is a key component for the success of dental implants. The trabecular bone strength is usually assessed by quantity of bone in terms of bone mineral density (BMD). Recently, it has been revealed that along with quantity of bone, strength of the bone also depends on quality features commonly referred as trabecular bone microarchitecture. Since the quality of the trabecular bone is varying across the maxilla and mandible, preoperative assessment of trabecular bone microarchitecture at sub-region of maxilla and mandible are essential for stable implant treatment. Thus, in this chapter, the authors inscribe the quantitative analysis of trabecular bone quality in maxilla and mandible using CBCT images by employing contourlet transform.


Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrey Yatsun ◽  
Sergei Savin

In this chapter, the lower limb exoskeleton is studied. The roles of the exoskeleton both as a measurement device for studying human locomotion and as an assistive device that restores the human ability to walk are discussed. Particular attention is given to the investigation of the role of the pressure sensors and other devices that allow us to measure normal reactions at the contact points with the supporting surface and also detect these contacts. The way the geometry of the supporting surface affects the sensors system of the robot is considered, and new designs for feet sensor system are proposed. These include elastic foot, a foot with actuated sensors, and a foot with spring-damper systems.


Sign in / Sign up

Export Citation Format

Share Document