soil organic matter decomposition
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 29)

H-INDEX

39
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Jarmo Mäkelä ◽  
Laura Arppe ◽  
Hannu Fritze ◽  
Jussi Heinonsalo ◽  
Jari Liski ◽  
...  

Abstract. Soil carbon sequestration has gained traction as a mean to mitigate rising atmospheric carbon dioxide concentrations. Verification of different methods’ efficiency to increase soil carbon sink requires, in addition to good quality measurements, reliable models capable of simulating the effect of the sequestration practices. One way to get insight of the methods’ effects on carbon cycling processes is to analyse different carbon isotope concentrations in soil organic matter. In this paper we introduce a carbon-13 isotope specific soil organic matter decomposition add-on into the Yasso soil carbon model and assess its functionality. The new 13C-dedicated decomposition is straightforward to implement and depends linearly on the default Yasso model parameters and the relative carbon isotope (13C/12C) concentration. Despite of their simplicity, the modifications considerably improve the model behaviour in a 50-year long simulation.


2021 ◽  
Author(s):  
Karin Kauer ◽  
Sandra Pärnpuu

<p>The aim of this research was to study the effect of different plants on soil organic matter (SOM) composition. The composition of SOM was studied in a field experiment established in 1964 on a carbonaceous glacial till soil with very low initial SOC concentration (1.28 g kg<sup>-1</sup>). The effects on SOM composition of bare fallow, barley, grasses, and clover-grasses mixture, were studied using 13C nuclear magnetic resonance (NMR) spectroscopy which is a common tool to characterize SOM. In 2014 the soil samples were collected from 0-5 cm soil layer, air-dried samples sieved through a 2-mm sieve and pretreated with 10% HF solution before NMR spectroscopy analysis. Samples of bulk soil and density fractionated mineral fraction (John et al., 2005) were analyzed. Also, a sample from barley treatment collected in 1966 was analyzed.</p><p>O/N-alkyl C was the most abundant C type at the start of the experiment and also in all treatments after 50 years. During 50 years the proportions of O/N-alkyl C and alkyl C increased but contributions of carboxyl C and aromatic C decreased. The ratio of alkyl C/O-alkyl C, which describes the degree of soil organic matter decomposition, decreased from 0.47 (in 1966) to 0.40-0.44 in treatments with plants. In bare fallow treatment, the SOM decomposition stage did not change a lot during the time. In soil mineral fraction the differences between treatments appeared more clearly and the degree of decomposition decreased in line: bare fallow>barley>clover-grasses>grasses (0.49>0.40>0.36>0.34) and this was due to higher O/N-alkyl-C content in treatments with plants. The higher O/N-alkyl C contribution in soil heavy fraction can be attributed to microbially synthesized carbohydrates (Yeasmin et al., 2020) and depended on the amount and properties of C input into the soil in different treatments.</p><p>In conclusion, the SOM composition was influenced by plant composition and the effect was more pronounced in soil mineral fraction. The SOM degree of decomposition was higher in treatment with annual crop (barley during 50 years). Under perennial grasses and clover-grasses mixture, the soil organic matter decomposition degree was lower.</p><p>This work was supported by the Estonian Research Council grant PSG147.</p><p>References</p><p>John, B., Yamashita, T., Ludwig, B., & Flessa, H. (2005). Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128(1–2), 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013</p><p>Yeasmin, S., Singh, B., Smernik, R. J., & Johnston, C. T. (2020). Effect of land use on organic matter composition in density fractions of contrasting soils: A comparative study using 13C NMR and DRIFT spectroscopy. Science of the Total Environment, 726, 138395. https://doi.org/10.1016/j.scitotenv.2020.138395</p>


2021 ◽  
Vol 153 ◽  
pp. 108108
Author(s):  
Moritz Laub ◽  
Rana Shahbaz Ali ◽  
Michael Scott Demyan ◽  
Yvonne Funkuin Nkwain ◽  
Christian Poll ◽  
...  

2021 ◽  
Author(s):  
Jarmo Mäkelä ◽  
Laura Arppe ◽  
Hannu Fritze ◽  
Jussi Heinonsalo ◽  
Jari Liski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document