epiphytic fungi
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 7 (11) ◽  
pp. 972
Author(s):  
Valeria Imperato ◽  
Miguel Portillo-Estrada ◽  
Anabel Saran ◽  
Anneleen Thoonen ◽  
Łukasz Kowalkowski ◽  
...  

Plants can ‘catch’ and mitigate airborne pollutants and are assisted by fungi inhabiting their leaves. The structure and function of the fungal communities inhabiting the phyllosphere of hornbeam trees growing in two chronically polluted areas, the oilfield of Bóbrka and the city center of Warsaw, were compared to the ones growing in one nature reserve, the Białowieża National Park. Fungi were isolated and characterized both phylogenetically and functionally for their potential role in air pollution mitigation. Both culture-dependent (e.g., enzyme assays and tolerance tests) and culture-independent methods (e.g., ITS and shotgun sequencings) were used. Furthermore, the degradation potential of the fungi was assessed by gas chromatography mass spectrometry (GC-MS). Shotgun sequencing showed that the phyllosphere fungal communities were dominated by fungi belonging to the phylum Ascomycota. Aureobasidium was the only genus detected at the three locations with a relative abundance ≥1.0%. Among the cultivated epiphytic fungi from Bóbrka, Fusarium sporotrichioides AT11, Phoma herbarum AT15, and Lophiostoma sp. AT37 showed in vitro aromatic hydrocarbon degradation potential with laccase activities of 1.24, 3.62, and 7.2 μU L−1, respectively, and peroxidase enzymes with activities of 3.46, 2.28, and 7.49 μU L−1, respectively. Furthermore, Fusarium sporotrichioides AT11 and Phoma herbarum AT15 tolerated exposure to airborne naphthalene and benzene. Lophiostoma sp. AT37 was the most tolerant to exposure to these pollutants, in line with being the best potential aromatic hydrocarbon degrader isolated in this study.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8889
Author(s):  
Hua Xu ◽  
Minjie Zhu ◽  
Shaoshan Li ◽  
Weibin Ruan ◽  
Can Xie

Background Ipomoea cairica (L.) Sweet is a destructive invasive weed in South China but rarely infected with pathogens in nature. Its pathogen resistance mechanism is largely unknown at present. Some non-pathogenic isolates of Fusarium oxysporum and Fusarium fujikuroi are prevalent on many plant species and function as pathogen resistance inducers of host plants. The objective of the present research is to investigate whether the symbiosis between the both fungi and I. cairica is present, and thereby induces pathogen resistance of I. cairica. Methods Through field investigation, we explored the occurrence rates of F. oxysporum and F. fujikuroi on leaf surfaces of I. cairica plants in natural habitats and compared their abundance between healthy leaves and leaves infected with Colletotrichum gloeosporioides, a natural pathogen. With artificial inoculation, we assessed their pathogenicity to I. cairica and studied their contribution of pathogen resistance to I. cairica against C. gloeosporioides. Results We found that F. oxysporum and F. fujikuroi were widely epiphytic on healthy leaf surfaces of I. cairica in sunny non-saline, shady non-saline and sunny saline habitats. Their occurrence rates reached up to 100%. Moreover, we found that the abundance of F. oxysporum and F. fujikuroi on leaves infected with C. gloeosporioides were significantly lower than that of healthy leaves. With artificial inoculation, we empirically confirmed that F. oxysporum and F. fujikuroi were non-pathogenic to I. cairica. It was interesting that colonization by F. fujikuroi, F. oxysporum alone and a mixture of both fungi resulted in a reduction of C. gloeosporioides infection to I. cairica accompanied by lower lesion area to leaf surface area ratio, increased hydrogen peroxide (H2O2) concentration and salicylic acid (SA) level relative to the control. However, NPR1 expression, chitinase and β-1,3-glucanase activities as well as stem length and biomass of I. cairica plant only could be significantly improved by F. oxysporum and a mixture of both fungi but not by F. fujikuroi. In addition, as compared to colonization by F. oxysporum and a mixture of both fungi, F. fujikuroi induced significantly higher jasmonic acid (JA) level but significantly lower β-1,3-glucanase activity in leaves of I. cairica plants. Thus, our findings indicated the symbiosis of epiphytic fungiF. fujikuroi and F. oxysporum induced systemic resistance of I. cairica against C. gloeosporioides. F. oxysporum played a dominant role in inducing pathogen resistance of I. cairica. Its presence alleviated the antagonism of the JA signaling on SA-dependent β-1,3-glucanase activity and enabled I. cairica plants to maintain relatively higher level of resistance against C. gloeosporioides.


2019 ◽  
Author(s):  
Hua Xu ◽  
Minjie Zhu ◽  
Shaoshan Li ◽  
Weibin Ruan ◽  
Can Xie

Background. Ipomoea cairica (L.) Sweet is a destructive invasive weed in South China but rarely infected with pathogens in nature. Its pathogen resistance mechanism is largely unknown at present. Some non-pathogenic isolates of Fusarium oxysporum and Fusarium fujikuroi are prevalent on many plant species and function as pathogen resistance inducers of host plants. The objective of the present research is to investigate whether the symbiosis between the both fungi and I. cairica is present, and thereby induce pathogen resistance of I. cairica. Methods. Through field investigation, we explored the occurrence rates of F. oxysporum and F. fujikuroi on leaf surfaces of I. cairica plants in natural habitats and compared their abundance between healthy leaves and leaves infected with Colletotrichum gloeosporioides, a natural pathogen. With artificial inoculation, we assessed their pathogencity to I. cairica and study their contribution of pathogen resistance to I. cairica against C. gloeosporioides. Results. We found that F. oxysporum and F. fujikuroi were widely epiphytic on healthy leaf surfaces of I. cairica in sunny non-saline, shady non-saline and sunny saline habitats. Their occurrence rates reached up to 100%. Moreover, we found that the abundance of F. oxysporum and F. fujikuroi on leaves infected with C. gloeosporioides were significantly lower than that of healthy leaves. With artificial inoculation, we empirically confirmed that F. oxysporum and F. fujikuroi were non-pathogenic to I. cairica. It was interesting that colonization by F. fujikuroi, F. oxysporum alone and a mixture of both fungi resulted in a reduction of C. gloeosporioides infection to I. cairica accompanied by lower lesion area to leaf surface area ratio, increased H2O2 concentration and salicylic acid (SA) level relative to the control. However, NPR1 expression, chitinase and β -1,3-glucanase activities as well as stem length and biomass of I. cairica plant only could be significantly improved by F. oxysporum and a mixture of both fungi but not by F. fujikuroi. In addition, as compared to colonization by F. oxysporum and a mixture of both fungi, F. fujikuroi induced significantly higher jasmonic acid (JA) level but significantly lower β -1,3-glucanase activity in leaves of I. cairica plants. Thus, our findings indicated the symbiosis of epiphytic fungi F. fujikuroi and F. oxysporum facilitated the fitness of I. cairica via the induced systemic resistance of host plant against C. gloeosporioides. F. oxysporum played a dominant role in inducing pathogen resistance of I. cairica. Its presence alleviated the antagonism of the JA signaling on SA-dependent β -1,3-glucanase activity and enabled I. cairica plants to maintain relatively higher level of resistance against C. gloeosporioides.


2019 ◽  
Author(s):  
Hua Xu ◽  
Minjie Zhu ◽  
Shaoshan Li ◽  
Weibin Ruan ◽  
Can Xie

Background. Ipomoea cairica (L.) Sweet is a destructive invasive weed in South China but rarely infected with pathogens in nature. Its pathogen resistance mechanism is largely unknown at present. Some non-pathogenic isolates of Fusarium oxysporum and Fusarium fujikuroi are prevalent on many plant species and function as pathogen resistance inducers of host plants. The objective of the present research is to investigate whether the symbiosis between the both fungi and I. cairica is present, and thereby induce pathogen resistance of I. cairica. Methods. Through field investigation, we explored the occurrence rates of F. oxysporum and F. fujikuroi on leaf surfaces of I. cairica plants in natural habitats and compared their abundance between healthy leaves and leaves infected with Colletotrichum gloeosporioides, a natural pathogen. With artificial inoculation, we assessed their pathogencity to I. cairica and study their contribution of pathogen resistance to I. cairica against C. gloeosporioides. Results. We found that F. oxysporum and F. fujikuroi were widely epiphytic on healthy leaf surfaces of I. cairica in sunny non-saline, shady non-saline and sunny saline habitats. Their occurrence rates reached up to 100%. Moreover, we found that the abundance of F. oxysporum and F. fujikuroi on leaves infected with C. gloeosporioides were significantly lower than that of healthy leaves. With artificial inoculation, we empirically confirmed that F. oxysporum and F. fujikuroi were non-pathogenic to I. cairica. It was interesting that colonization by F. fujikuroi, F. oxysporum alone and a mixture of both fungi resulted in a reduction of C. gloeosporioides infection to I. cairica accompanied by lower lesion area to leaf surface area ratio, increased H2O2 concentration and salicylic acid (SA) level relative to the control. However, NPR1 expression, chitinase and β -1,3-glucanase activities as well as stem length and biomass of I. cairica plant only could be significantly improved by F. oxysporum and a mixture of both fungi but not by F. fujikuroi. In addition, as compared to colonization by F. oxysporum and a mixture of both fungi, F. fujikuroi induced significantly higher jasmonic acid (JA) level but significantly lower β -1,3-glucanase activity in leaves of I. cairica plants. Thus, our findings indicated the symbiosis of epiphytic fungi F. fujikuroi and F. oxysporum facilitated the fitness of I. cairica via the induced systemic resistance of host plant against C. gloeosporioides. F. oxysporum played a dominant role in inducing pathogen resistance of I. cairica. Its presence alleviated the antagonism of the JA signaling on SA-dependent β -1,3-glucanase activity and enabled I. cairica plants to maintain relatively higher level of resistance against C. gloeosporioides.


2019 ◽  
Vol 123 (4) ◽  
pp. 283-289 ◽  
Author(s):  
Su Ding ◽  
Nan Li ◽  
Muming Cao ◽  
Qiufeng Huang ◽  
Guopin Chen ◽  
...  

2016 ◽  
Vol 15 (24) ◽  
pp. 1217-1223 ◽  
Author(s):  
Marcelo Silva Lima Jo atilde o ◽  
Odair Pereira Jos eacute ◽  
Hort ecirc ncio Batista Ieda ◽  
de Queiroz Costa Neto Pedro ◽  
Concei ccedil atilde o dos Santos Jucileuza ◽  
...  
Keyword(s):  

2016 ◽  
Vol 36 (16) ◽  
Author(s):  
柴新义 CHAI Xinyi ◽  
柴钢青 CHAI Gangqing ◽  
向玉勇 XIANG Yuyong ◽  
张微微 ZHANG Weiwei ◽  
殷培峰 YIN Peifeng

Sign in / Sign up

Export Citation Format

Share Document