Composition and ecological distribution of endophytic and epiphytic fungi from the foliage ofPteroceltis tatarinowii

2016 ◽  
Vol 36 (16) ◽  
Author(s):  
柴新义 CHAI Xinyi ◽  
柴钢青 CHAI Gangqing ◽  
向玉勇 XIANG Yuyong ◽  
张微微 ZHANG Weiwei ◽  
殷培峰 YIN Peifeng
2021 ◽  
Author(s):  
Alexandre Oliveira Marques ◽  
Aline Nonato Sousa ◽  
Veronica Pereira Bernardes ◽  
Camila Hipolito Bernardo ◽  
Danielle Monique Reis ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 221
Author(s):  
Florentina Piña ◽  
Loretto Contreras-Porcia

Red alga species belonging to the Porphyra and Pyropia genera (commonly known as Nori), which are widely consumed and commercialized due to their high nutritional value. These species have a carotenoid profile dominated by xanthophylls, mostly lutein and zeaxanthin, which have relevant benefits for human health. The effects of different abiotic factors on xanthophyll synthesis in these species have been scarcely studied, despite their health benefits. The objectives of this study were (i) to identify the abiotic factors that enhance the synthesis of xanthophylls in Porphyra/Pyropia species by conducting a systematic review and meta-analysis of the xanthophyll content found in the literature, and (ii) to recommend a culture method that would allow a significant accumulation of these compounds in the biomass of these species. The results show that salinity significantly affected the content of total carotenoids and led to higher values under hypersaline conditions (70,247.91 µg/g dm at 55 psu). For lutein and zeaxanthin, the wavelength treatment caused significant differences between the basal and maximum content (4.16–23.47 µg/g dm). Additionally, in Pyropia spp., the total carotenoids were considerably higher than in Porphyra spp.; however, the lutein and zeaxanthin contents were lower. We discuss the specific conditions for each treatment and the relation to the ecological distribution of these species.


Author(s):  
Mohamed Abd. S. El zayat ◽  
Mahmoud El Sayd Ali ◽  
Mohamed Hamdy Amar

Abstract Background The Capparaceae family is commonly recognized as a caper, while Cleomaceae represents one of small flowering family within the order Brassicales. Earlier, Cleomaceae was included in the family Capparaceae; then, it was moved to a distinct family after DNA evidence. Variation in habits and a bewildering array of floral and fruit forms contributed to making Capparaceae a “trash-basket” family in which many unrelated plants were placed. Indeed, family Capparaceae and Cleomaceae are in clear need of more detailed systematic revision. Results Here, in the present study, the morphological characteristics and the ecological distribution as well as the genetic diversity analysis among the twelve species of both Capparaceae and Cleomaceae have been determined. The genetic analysis has been checked using 15 ISSR, 30 SRAP, and 18 ISTR to assess the systematic knots between the two families. In order to detect the molecular phylogeny, a comparative analysis of the three markers was performed based on the exposure of discriminating capacity, efficiency, and phylogenetic heatmap. Our results indicated that there is a morphological and ecological variation between the two families. Moreover, the molecular analysis confirmed that ISTR followed by SRAP markers has superior discriminating capacity for describing the genetic diversity and is able to simultaneously distinguish many polymorphic markers per reaction. Indeed, both the PCA and HCA data have drawn a successful annotation relationship in Capparaceae and Cleome species to evaluate whether the specific group sort individual or overlap groups. Conclusion The outcomes of the morphological and ecological characterization along with the genetic diversity indicated an insight solution thorny interspecies in Cleome and Gynandropsis genera as a distinct family (Cleomaceae) and the other genera (Capparis, Cadaba, Boscia, and Maerua) as Capparaceae. Finally, we recommended further studies to elucidate the systematic position of Dipterygium glaucum.


Author(s):  
C. N. Page ◽  
Marian A. Barker

SynopsisHybridisation in Equisetum in Britain and Ireland is examined in respect of the exceptional numbers of hybrids present, their geographic and ecological distribution, their formation and subsequent spread.It is concluded that the moist oceanic climate and relative paucity of competing species in the British and Irish floras in post-glacial time have created uniquely favourable conditions for the formation and subsequent success of hybrid horsetails, promoting both the short-term persistence of weaker hybrids, and the extremly long-term persistence of others.The taxonomic inter-relations of parental combinations which have formed ecologically successful hybrids are discussed.


Our Nature ◽  
1970 ◽  
Vol 2 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Kalu Ram Rai

Tangting River originates from southern slope of Murtidanda of Mahabharat range and forms a very narrow v-shaped agriculturally fertile valley in lower parts of Chure hills. It has three main tributaries merging from east and west. Water is clear with rocky bed and margin is covered with thick bushes of semi-shrubs (Eupatorium adenophorum). During the herpetological survey, a live juvenile specimen of Cyclemys oldhamii (Gray, 1983) was collected from the periphery of Banmare Khola, an eastern tributory of the river. It was found hiding in the paddy field in the flood plain of Tangting river (280 m), and another adult specimen was collected from Dhobi Khola (450 m), a western tributory of the river. Empty shells were also collected from Garuwa and Mai valleys, respectively. Tangting and Garuwa river valleys are the favourable habitats for Cyclemys oldhamii. The main reason of discontinued distribution is habitat loss by deforestation. Key words: Cyclemys, Morphology, Ecological habitats, Distributiondoi:10.3126/on.v2i1.317Our Nature (2004) 2: 7-12


1986 ◽  
Vol 5 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Nigel R. Ainsworth ◽  
Nicola F. Horton

Abstract. The geology, biostratigraphy and palaeoecology of exploration well Elf 55/30–1 in the Fastnet Basin are summarised. The biostratigraphical and ecological distribution of the foraminifera and Ostracoda from the late Triassic, the Lower Jurassic and the Lower Cretaceous are reviewed with reference to microfaunas elsewhere in Europe. Selected microfossil taxa are illustrated.


1959 ◽  
Vol 36 (4) ◽  
pp. 613-631
Author(s):  
J. S. RYLAND

1. Many species of Polyzoa show marked specificity with regard to the substrate on which they occur. Epiphytic forms are often found mainly on one species of alga. 2. Experiments were performed in which a number of algal species were offered to polyzoan larvae as substrates for settlement. The disposition of algae, and the dishes containing them, was such that the layout conformed to a Youden Square design. This not only achieved economy of materials, but ensured a balanced experiment, made possible a statistical analysis of the results, and eliminated any possible effects of extraneous environmental factors. 3. The larvae showed marked substrate preferences when settling. In the littoral forms Alcyonidium hirsutum, A. polyoum and Flustrellidra hispida, the selection of algae accorded closely with their observed natural distributions: in each case highest settlement took place on Fucus serratus. It seems probable that positive selection plays an important role in determining the distribution of these species on the shore. Celleporella hyalina larvae were also selective, but the preferences were less clearly related to the ecological distribution of the adult. 4. Surface texture appears more important than contour as a factor influencing the choice made by larvae between algal substrates, although the physical and/or chemical factors responsible for the observed differences in attractiveness of algae are largely unknown. However, it is evident that the nature of the surface alters with age, and that this influences favourability. The presence of mucus has an adverse effect on settlement. Once the actual substrate has been chosen, the larvae respond to surface contour and, if possible, select a groove or concavity as a site for fixation.


Sign in / Sign up

Export Citation Format

Share Document