mouse genome sequence
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2004 ◽  
Vol 78 (15) ◽  
pp. 8219-8228 ◽  
Author(s):  
Vincent van Pesch ◽  
Hanane Lanaya ◽  
Jean-Christophe Renauld ◽  
Thomas Michiels

ABSTRACT Mouse and human genomes carry more than a dozen genes coding for closely related alpha interferon (IFN-α) subtypes. IFN-α, as well as IFN-β, IFN-κ, IFN-ε, and limitin, are thought to bind the same receptor, raising the question of whether different IFN subtypes possess specific functions. As some confusion existed in the identity and characteristics of mouse IFN-α subtypes, the availability of data from the mouse genome sequence prompted us to characterize the murine IFN-α family. A total of 14 IFN-α genes were detected in the mouse genome, in addition to three IFN-α pseudogenes. Four IFN-α genes (IFN-α1, IFN-α7/10, IFN-α8/6, and IFN-α11) exhibited surprising allelic divergence between 129/Sv and C57BL/6 mice. All IFN-α subtypes were found to be stable at pH 2 and to exhibit antiviral activity. Interestingly, some IFN subtypes (IFN-α4, IFN-α11, IFN-α12, IFN-β, and limitin) showed higher biological activity levels than others, whereas IFN-α7/10 exhibited lower activity. Most murine IFN-α turned out to be N-glycosylated. However, no correlation was found between N-glycosylation and activity. The various IFN-α subtypes displayed a good correlation between their antiviral and antiproliferative potencies, suggesting that IFN-α subtypes did not diverge primarily to acquire specific biological activities but probably evolved to acquire specific expression patterns. In L929 cells, IFN genes activated in response to poly(I•C) transfection or to viral infection were, however, similar.


Genomics ◽  
2001 ◽  
Vol 77 (3) ◽  
pp. 117-118 ◽  
Author(s):  
Jane Rogers ◽  
Allan Bradley

1986 ◽  
Vol 6 (4) ◽  
pp. 1276-1282
Author(s):  
A Itin ◽  
E Keshet

The VL30 family is a retroviruslike gene family with no apparent nucleic acid homology to any known retrovirus. Over 100 copies of VL30 DNA elements are dispersed throughout the mouse genome. Sequence analysis of the VL30 long terminal repeat (LTR) units showed that, whereas the LTR units of a given VL30 DNA element were almost identical, the LTR units associated with distinct members of the family were very different from one another. Comparison of the LTR sequences possessed by two particular VL30 DNA elements revealed a pattern of extensively homologous DNA segments adjacent to only distantly related DNA sequences. With the aid of sub-LTR probes, it was shown that a certain LTR is composed of both U5 sequences that are abundantly present in all species of the genus Mus and a U3 region detected only in Mus musculus. In addition, we isolated a VL30 DNA element in which the LTR units were replaced by the LTR units of an apparently novel retroviruslike family. These findings suggest that recombinations have played a role in generating the diverse population of VL30-associated LTRs.


1986 ◽  
Vol 6 (4) ◽  
pp. 1276-1282 ◽  
Author(s):  
A Itin ◽  
E Keshet

The VL30 family is a retroviruslike gene family with no apparent nucleic acid homology to any known retrovirus. Over 100 copies of VL30 DNA elements are dispersed throughout the mouse genome. Sequence analysis of the VL30 long terminal repeat (LTR) units showed that, whereas the LTR units of a given VL30 DNA element were almost identical, the LTR units associated with distinct members of the family were very different from one another. Comparison of the LTR sequences possessed by two particular VL30 DNA elements revealed a pattern of extensively homologous DNA segments adjacent to only distantly related DNA sequences. With the aid of sub-LTR probes, it was shown that a certain LTR is composed of both U5 sequences that are abundantly present in all species of the genus Mus and a U3 region detected only in Mus musculus. In addition, we isolated a VL30 DNA element in which the LTR units were replaced by the LTR units of an apparently novel retroviruslike family. These findings suggest that recombinations have played a role in generating the diverse population of VL30-associated LTRs.


Sign in / Sign up

Export Citation Format

Share Document