monotone circuits
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Bruno Pasqualotto Cavalar ◽  
Yoshiharu Kohayakawa

Alexander Razborov (1985) developed the approximation method to obtain lower bounds on the size of monotone circuits deciding if a graph contains a clique. Given a "small" circuit, this technique consists in finding a monotone Boolean function which approximates the circuit in a distribution of interest, but makes computation errors in that same distribution. To prove that such a function is indeed a good approximation, Razborov used the sunflower lemma of Erd\H{o}s and Rado (1960). This technique was improved by Alon and Boppana (1987) to show lower bounds for a larger class of monotone computational problems. In that same work, the authors also improved the result of Razborov for the clique problem, using a relaxed variant of sunflowers. More recently, Rossman (2010) developed another variant of sunflowers, now called "robust sunflowers", to obtain lower bounds for the clique problem in random graphs. In the following years, the concept of robust sunflowers found applications in many areas of computational complexity, such as DNF sparsification, randomness extractors and lifting theorems. Even more recent was the breakthrough result of Alweiss, Lovett, Wu and Zhang (2020), which improved Rossman's bound on the size of hypergraphs without robust sunflowers. This result was employed to obtain a significant progress on the sunflower conjecture. In this work, we will show how the recent progress in sunflower theorems can be applied to improve monotone circuit lower bounds. In particular, we will show the best monotone circuit lower bound obtained up to now, breaking a 20-year old record of Harnik and Raz (2000). We will also improve the lower bound of Alon and Boppana for the clique function in a slightly more restricted range of clique sizes. Our exposition is self-contained. These results were obtained in a collaboration with Benjamin Rossman and Mrinal Kumar.


Author(s):  
Mateus Rodrigues Alves ◽  
Mateus de Oliveira Oliveira ◽  
Janio Carlos Nascimento Silva ◽  
Uéverton dos Santos Souza
Keyword(s):  

2018 ◽  
Vol 18 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jan Krajíček

The feasible interpolation theorem for semantic derivations from [J. Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, J. Symbolic Logic 62(2) (1997) 457–486] allows to derive from some short semantic derivations (e.g. in resolution) of the disjointness of two [Formula: see text] sets [Formula: see text] and [Formula: see text] a small communication protocol (a general dag-like protocol in the sense of Krajíček (1997) computing the Karchmer–Wigderson multi-function [Formula: see text] associated with the sets, and such a protocol further yields a small circuit separating [Formula: see text] from [Formula: see text]. When [Formula: see text] is closed upwards, the protocol computes the monotone Karchmer–Wigderson multi-function [Formula: see text] and the resulting circuit is monotone. Krajíček [Interpolation by a game, Math. Logic Quart. 44(4) (1998) 450–458] extended the feasible interpolation theorem to a larger class of semantic derivations using the notion of a real communication complexity (e.g. to the cutting planes proof system CP). In this paper, we generalize the method to a still larger class of semantic derivations by allowing randomized protocols. We also introduce an extension of the monotone circuit model, monotone circuits with a local oracle (CLOs), that does correspond to communication protocols for [Formula: see text] making errors. The new randomized feasible interpolation thus shows that a short semantic derivation (from a certain class of derivations larger than in the original method) of the disjointness of [Formula: see text], [Formula: see text] closed upwards, yields a small randomized protocol for [Formula: see text] and hence a small monotone CLO separating the two sets. This research is motivated by the open problem to establish a lower bound for proof system [Formula: see text] operating with clauses formed by linear Boolean functions over [Formula: see text]. The new randomized feasible interpolation applies to this proof system and also to (the semantic versions of) cutting planes CP, to small width resolution over CP of Krajíček [Discretely ordered modules as a first-order extension of the cutting planes proof system, J. Symbolic Logic 63(4) (1998) 1582–1596] (system R(CP)) and to random resolution RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Symbolic Logic 79(2) (2014) 496–525]. The method does not yield yet lengths-of-proofs lower bounds; for this it is necessary to establish lower bounds for randomized protocols or for monotone CLOs.


2012 ◽  
Vol 59 (1) ◽  
pp. 1-24 ◽  
Author(s):  
James Aspnes ◽  
Hagit Attiya ◽  
Keren Censor-Hillel

Sign in / Sign up

Export Citation Format

Share Document