sedimentary petrology
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 37 (2) ◽  
Author(s):  
G M Bhat

The current world human population is about 7.834 billion as of 25 December 2020 according to the most recent United Nations estimates elaborated by Worldometer. The sustenance and development of civilizations is primarily based on water, mineral and soil resources, and oil and gas hosted in the sediment profile of Earth’s crust. The study of natural sediments and sedimentary rocks, and the processes involved in their formation are embedded in the domain of sedimentology. The science of sedimentology is as old as very beginning of the study of geology itself. The term sedimentology was first used by A.C. Trowbridge in 1925 (Waddell, 1933), but it was not in common use until the 1950s. The progress of sedimentological studies has passed through various phases during the last about two centuries: 1) development of sedimentary petrology initiated by the Western European School (1849-1950s); 2) granulometry and sedimentation by American School (1920s-1960s); 3) lithology and facies analysis by the Russian School (1870s-1970s).


2019 ◽  
Vol 483 (1) ◽  
pp. 65-122 ◽  
Author(s):  
Eduardo Garzanti

AbstractThis chapter summarizes the available stratigraphic, petrographical and mineralogical evidence from sediments and sedimentary rocks on the evolution of the Himalayan belt and its associated foreland basin. The use of compositional signatures of modern sediments to unravel provenance changes and palaeodrainage evolution through time is hampered by a poor match with detrital modes of ancient strata markedly affected by selective chemical dissolution of unstable minerals during diagenesis. Only semi-quantitative diagnoses can thus be attempted. Volcanic detritus derived from Transhimalayan arcs since India–Asia collision onset at c. 60 Ma was deposited onto the Indian lower plate throughout the Protohimalayan stage, with the exception of the Tansen region of Nepal that is characterized by quartz-arenites yielding orogen-derived zircon grains. During the Eohimalayan stage, begun in the late Eocene when most sedimentation ceased in the Tethys Himalayan domain, low-rank metasedimentary detritus was overwhelming in the central foreland basin, where a widespread unconformity developed spanning locally as much as 20 myr. Volcanic detritus from Transhimalayan arcs remained significant in northern Pakistan. Arrival of higher-rank metamorphic detritus since the earliest Miocene, and the successive occurrence of garnet, staurolite, kyanite and finally sillimanite, characterized the Neohimalayan stage, when repeated compositional changes in the foreland-basin succession document the stepwise propagation of crustal deformation across the Indian Plate margin and widening of the thrust belt with exhumation of progressively more external tectonic units. The correspondence in time between the activity of major thrusts and petrofacies changes indicates a promising approach to accurately reconstruct the geological evolution of the coupled orogen–basin system. Conversely, a poor conceptual framework and the general reliance on ad hoc mechanisms to explain phenomena unpredicted by simplified models represent major factors limiting the robustness of palaeotectonic interpretations. Improved knowledge requires taking into full account the dynamic role played by still poorly understood subduction processes – rather than exclusively the effect of passive loading – as well as the role played by the presence of inherited structures on the downgoing Indian Plate, which control both lateral variability of orogenic deformation and the location of depocentres in the foreland basin.


2018 ◽  
Vol 156 (07) ◽  
pp. 1111-1130 ◽  
Author(s):  
J. VERHAEGEN ◽  
G.J. WELTJE ◽  
D. MUNSTERMAN

AbstractThe field of provenance analysis has seen a revival in the last decade as quantitative data-acquisition techniques continue to develop. In the 20th century, many heavy-mineral data were collected. These data were mostly used as qualitative indications for stratigraphy and provenance, and not incorporated in a quantitative provenance methodology. Even today, such data are mostly only used in classic data tables or cumulative heavy-mineral plots as a qualitative indication of variation. The main obstacle to rigorous statistical analysis is the compositional nature of these data which makes them unfit for standard multivariate statistics. To gain more information from legacy data, a straightforward workflow for quantitative analysis of compositional datasets is provided. First (1) a centred log-ratio transformation of the data is carried out to fix the constant-sum constraint and non-negativity of the compositional data. Next, (2) cluster analysis is followed by (3) principal component analysis and (4) bivariate log-ratio plots. Several (5) proxies for the effects of sorting and weathering are included to check the provenance significance of observed variations and finally a (6) spatial interpolation of a provenance proxy extracted from the dataset can be carried out. To test this methodology, available heavy-mineral data from the southern edge of the Miocene North Sea Basin are analysed. The results are compared with available information from literature and are used to gain improved insight into Miocene sediment input variations in the study area.


Sign in / Sign up

Export Citation Format

Share Document