spectrum loading
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 13)

H-INDEX

17
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 807
Author(s):  
James C. Newman

Fatigue of materials, like alloys, is basically fatigue-crack growth in small cracks nucleating and growing from micro-structural features, such as inclusions and voids, or at micro-machining marks, and large cracks growing to failure. Thus, the traditional fatigue-crack nucleation stage (Ni) is basically the growth in microcracks (initial flaw sizes of 1 to 30 μm growing to about 250 μm) in metal alloys. Fatigue and crack-growth tests were conducted on a 9310 steel under laboratory air and room temperature conditions. Large-crack-growth-rate data were obtained from compact, C(T), specimens over a wide range in rates from threshold to fracture for load ratios (R) of 0.1 to 0.95. New test procedures based on compression pre-cracking were used in the near-threshold regime because the current ASTM test method (load shedding) has been shown to cause load-history effects with elevated thresholds and slower rates than steady-state behavior under constant-amplitude loading. High load-ratio (R) data were used to approximate small-crack-growth-rate behavior. A crack-closure model, FASTRAN, was used to develop the baseline crack-growth-rate curve. Fatigue tests were conducted on single-edge-notch-bend, SEN(B), specimens under both constant-amplitude and a Cold-Turbistan+ spectrum loading. Under spectrum loading, the model used a “Rainflow-on-the-Fly” subroutine to account for crack-growth damage. Test results were compared to fatigue-life calculations made under constant-amplitude loading to establish the initial microstructural flaw size and predictions made under spectrum loading from the FASTRAN code using the same micro-structural, semi-circular, surface-flaw size (6-μm). Thus, the model is a unified fatigue approach, from crack nucleation (small-crack growth) and large-crack growth to failure using fracture mechanics principles. The model was validated for both fatigue and crack-growth predictions. In general, predictions agreed well with the test data.


2020 ◽  
Vol 21 (4) ◽  
pp. 984-995
Author(s):  
Weiying Meng ◽  
Yupeng Li ◽  
Xiaochen Zhang ◽  
Huaitao Shi ◽  
Yu Zhang ◽  
...  

Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 9
Author(s):  
Roslinda Idris ◽  
Shahrum Abdullah ◽  
Prakash Thamburaja ◽  
Mohd Zaidi Omar

This paper presents the assessment of fatigue crack growth rate for dual-phase steel under spectrum loading based on entropy generation. According to the second law of thermodynamics, fatigue crack growth is related to entropy gain because of its irreversibility. In this work, the temperature evolution and crack length were simultaneously measured during fatigue crack growth tests until failure to ensure the validity of the assessment. Results indicated a significant correlation between fatigue crack growth rate and entropy. This relationship is the basis in developing a model that can determine the characteristics of fatigue crack growth rates, particularly under spectrum loading. Predictive results showed that the proposed model can accurately predict the fatigue crack growth rate under spectrum loading in all cases. The root mean square error in all cases is 10−7 m/cycle. In conclusion, entropy generation can accurately predict the fatigue crack growth rate of dual-phase steels under spectrum loading.


Sign in / Sign up

Export Citation Format

Share Document