damage criterion
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 759
Author(s):  
Faisal Qayyum ◽  
Sergey Guk ◽  
Ulrich Prahl

The mechanical behavior of newly developed composite materials is dependent on several underlying microstructural phenomena. In this research, a periodic 2D geometry of cast X8CrMnNi16-6-6 steel and 10% zirconia composite is virtually constructed by adopting microstructural attributes from literature. A physics-based crystal plasticity model with ductile damage criterion is used for defining the austenitic steel matrix. The zirconia particles are assigned elastic material model with brittle damage criterion. Monotonic quasi-static tensile load is applied up to 17% of total strain. The simulation results are analyzed to extract the global and local deformation, transformation, and damage behavior of the material. The comprehensively constructed simulation model yields the interdependence of the underlaying microstructural deformation phenomena. The local results are further analyzed based on the interlocked and free regions to establish the influence of zirconia particles on micro-mechanical deformation and damage in the metastable austenite matrix. The trends and patterns of local strain and damage predicted by the simulation model results match the previously carried out in-situ tensile tests on similar materials.


2021 ◽  
pp. 105678952199120
Author(s):  
Piere Saramito ◽  
Véronique Dansereau ◽  
Jérôme Weiss

This work presents a new damage criterion suitable for elastic, elastic-plastic/viscous or elastic-viscous-plastic materials involving rupture effects. Its derivation, made here within a thermodynamic framework, follows previous scalar-valued damage mechanics approaches. Such approaches are appropriate to many geophysical problems involving quasi-brittle materials for which there is no clear physical justification for the level of complexity of a tensorial damage variable. Distinction between the mechanical response to compressive and tensile stresses is therefore not introduced by the damage itself but via a special definition of the Helmholtz free energy. This scheme differs from previous ones in that it combines with an evolution of Poisson’s ratio with the level of damage, which allows expressing the damage criterion in the principal stresses space. Moreover, there is no need to compute the stress eigensystem, which makes it simpler to implement than the Mohr–Coulomb damage criterion. Here we derive this damage criterion and compare it to observations of the variations of the bulk modulus in damaged geomaterials. We also compare it to in-situ stress measurements and find a good agreement in terms of the shape of the criterion in the stress space. We tentatively interpret the results in the context of previous studies of rock and ice mechanics.


Author(s):  
Reza Pourhamid ◽  
Ali Shirazi

In the present study, the Johnson-Cook damage model is proposed as a comprehensive damage criterion to predict all types of probable failures in tube hydroforming process. Also, the Johnson-Cook material model is used to predict the profile of hydroformed tubes and their dimensions. The validity of numerical results was verified using experimental results obtained in this study. Moreover, because of the importance of friction force in this process, existing between the tube and die, the friction coefficient is determined using the ring compression test, separately. The comparison of experimental and numerical results shows that Johnson-Cook damage model can predict all of the possible failures in tube hydroforming process correctly, both in terms of location and loading conditions. And this model does not predict any failure if, the tube is hydroformed perfectly. Additionally, it was cleared that the Johnson-Cook material model is a proper model to predict the profile of hydroformed tubes with remarkable accuracy. Also, it was found that the loading path and creation of a proper wrinkling have a determinative and vital role in the prosperity of the process.


2020 ◽  
pp. 073168442094966
Author(s):  
Roham Rafiee ◽  
Sina Sotoudeh

A new approach for simulating delamination initiation under cyclic loading is proposed. This approach is based on the hysteresis cohesive zone modeling and the gradual degradation of interface properties. The initiation of delamination is predicted based on the monotonic traction–separation law of the interface. A damage criterion is proposed that depends on the bilinear traction–separation law and interlaminar stiffness is degraded by defining a damage parameter as a function of number of cycles and bilinear traction–separation law parameters. Numerical simulation is accomplished by implementing 2D finite element modeling for the case of double-notched specimen. Four-node zero-thickness interfacial cohesive elements are defined to capture the delamination behavior of midplane in the specimen. The results of numerical simulation are compared with available experimental data and a good agreement is observed. The main novelty of this research lies on assuming a cycle-by-cycle irreversible decrease in interlaminar stiffness prior to damage initiation and applying a damage criterion based on the bilinear traction–separation law in order to predict the number of cycles for initiation of delamination.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Geovana Drumond ◽  
Francine Roudet ◽  
Didier Chicot ◽  
Bianca Pinheiro ◽  
Ilson Pasqualino

Abstract A study was conducted to investigate the effects of surface microhardness on different phases of fatigue damage. This helps to estimate the evolution of the material resistance from microplastic distortions and gives pertinent data about cumulated fatigue damage. The objective of this work is to propose a damage criterion, associated with microstructural changes, to predict the fatigue life of steel structures submitted to cyclic loads before macroscopic cracking. Instrumented indentation tests (IIT) were conducted on test samples submitted to high cycle fatigue (HCF) loads. To evaluate the role of the microstructure initial state, the material was considered in two different conditions: as-received and annealed. It was observed that significant changes in the microhardness values happened at the surface and subsurface of the material, up to 2 µm of indentation depth, and around 21% and 7% of the fatigue life for as-received and annealed conditions, respectively. These percentages were identified as a critical period for microstructural changes, which was taken as a reference in a damage criterion to predict the number of cycles to fatigue failure (Nf) of a steel structure.


Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04066 ◽  
Author(s):  
Quazi Md. Zobaer Shah ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Md. Arefin Kowser

2020 ◽  
Vol 21 (4) ◽  
pp. 984-995
Author(s):  
Weiying Meng ◽  
Yupeng Li ◽  
Xiaochen Zhang ◽  
Huaitao Shi ◽  
Yu Zhang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2182
Author(s):  
Jungang Ren ◽  
Bingfeng Zhao ◽  
Liyang Xie ◽  
Zhiyong Hu

The reliability of aero engine has a direct impact on the flight safety of the whole plane. With the continuous improvement of performance requirements of aero engines, the related fatigue and reliability problems also appear. For the fatigue failure characteristics of the typical component (compressor disk) in an aero engine, the fatigue reliability of its multi-site damage structure in service is analyzed by using probability cumulative damage criterion in this paper. The probability distribution definitions of life, damage and damage threshold are discussed and the relationship among them is also introduced by the new proposed criterion. Meanwhile, a method to determine the probability distribution of cumulative damage threshold and probability life prediction is carried out, based on which a hierarchical index system of statistical analysis and reliability modeling principle on the system level is further constructed for compressor disk. At the end of the paper, a certain cruise of fighter plane is analyzed to verify the validity of the new model. Emphasizing the difference between the compressor disk and traditional component, the new reliability analysis model developed in this study is basically reasonable for most of the load histories for the compressor disk, other than the traditional one, especially for the changeable and complex cruise missions.


2019 ◽  
Vol 29 (6) ◽  
pp. 874-886 ◽  
Author(s):  
Tomasz Bulzak ◽  
Zbigniew Pater ◽  
Janusz Tomczak ◽  
Łukasz Wójcik

A method for determining the critical value of the Cockcroft–Latham damage criterion is presented using the example of R260 railway steel. The determinations were performed using a rotary compression test specially developed for that purpose. The main object of the proposed test was to provide the best possible representation of the state of stress generated by cross-wedge rolling. The rotary compression test was performed in two stages: in the first stage, experimental tests were conducted to establish the moment of cracking of the specimen, and in the second stage, numerical modeling was used to determine the critical value of the Cockcroft–Latham criterion for the experimentally established cracking moment. The critical value of the Cockcroft–Latham criterion was determined under hot forming conditions.


Sign in / Sign up

Export Citation Format

Share Document