airframe noise
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 2)

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 43
Author(s):  
Robert Valldosera Martinez ◽  
Frederico Afonso ◽  
Fernando Lau

In order to decrease the emitted airframe noise by a two-dimensional high-lift configuration during take-off and landing performance, a morphing airfoil has been designed through a shape design optimisation procedure starting from a baseline airfoil (NLR 7301), with the aim of emulating a high-lift configuration in terms of aerodynamic performance. A methodology has been implemented to accomplish such aerodynamic improvements by means of the compressible steady RANS equations at a certain angle of attack, with the objective of maximising its lift coefficient up to equivalent values regarding the high-lift configuration, whilst respecting the imposed structural constraints to guarantee a realistic optimised design. For such purposes, a gradient-based optimisation through the discrete adjoint method has been undertaken. Once the optimised airfoil is achieved, unsteady simulations have been carried out to obtain surface pressure distributions along a certain time-span to later serve as the input data for the aeroacoustic prediction framework, based on the Farassat 1A formulation, where the subsequent results for both configurations are post-processed to allow for a comparative analysis. Conclusively, the morphing airfoil has proven to be advantageous in terms of aeroacoustics, in which the noise has been reduced with respect to the conventional high-lift configuration for a comparable lift coefficient, despite being hampered by a significant drag coefficient increase due to stall on the morphing airfoil’s trailing edge.


2022 ◽  
Author(s):  
Michael Nucci ◽  
Eric Blades ◽  
Nicholas Reveles ◽  
Parthiv N. Shah ◽  
Travis L. Turner ◽  
...  

2021 ◽  
Vol 263 (3) ◽  
pp. 3194-3201
Author(s):  
Varun Bharadwaj Ananthan ◽  
R.A.D. Akkermans ◽  
Dragan Kozulovic

There is an increased emphasis on reducing airframe noise in the last decades. Airframe noise is sound generated by the interaction of a turbulent flow with the aircraft geometry, and significantly contributes to the overall noise production during the landing phase. One examples of airframe noise is the noise generated at a wing's trailing edge, i.e., trailing-edge noise. In this contribution, we numerically explore the local application of riblets for the purpose of trailing-edge noise reduction. Two configurations are studied: i) a clean NACA0012 wing section as a reference, and ii) the same configuration with riblets installed at the wing's aft part. The numerical investigation follows a hybrid computational aeroacoustics approach, where the time-average flow is studied by means of RANS. Noise sources are generated by means of a stochastic approach called Fast Random Particle Mesh method. The results show a deceleration of the flow behind the riblets. Furthermore, the turbulent kinetic energy indicates increased unsteadiness behind the riblets which is shifted away from the wall due to the presence of the riblets. Lastly, the sound sources are investigated by means of the 3D Lamb-vector, which indicates a slight reduction in magnitude near the trailing edge.


2021 ◽  
Author(s):  
Mehdi R. Khorrami ◽  
Benedikt Konig ◽  
Ehab Fares ◽  
Andre Ribeiro ◽  
Michael Czech ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Michael Czech ◽  
Leon Brusniak ◽  
Mehdi R. Khorrami ◽  
Ehab Fares ◽  
Benedikt Konig

2021 ◽  
pp. 1-17
Author(s):  
Gaetano Arena ◽  
Rainer M. J. Groh ◽  
Alberto Pirrera ◽  
Travis Turner ◽  
William Scholten ◽  
...  

2021 ◽  
pp. 1475472X2110032
Author(s):  
Yongfei Mu ◽  
Jie Li ◽  
Wutao Lei ◽  
Daxiong Liao

The aerodynamic noise of landing gears have been widely studied as an important component of the airframe noise. During take-off and landing, there are doors, cavity and fuselage around the landing gear. The noise caused by these aircraft components will interfere with aerodynamic noise generated by the landing gear itself. Hence, paper proposes an Improved Delayed Detached Eddy Simulation (IDDES) method for the investigation of the flow field around a single fuselage nose landing gear (NLG) model and a fuselage nose landing gear model with doors, cavity and fuselage nose (NLG-DCN) respectively. The difference between the two flow fields were analyzed in detail to better understand the influence of these components around the aircraft’s landing gear, and it was found that there is a serious mixing phenomenon among the separated flow from the front doors, the unstable shear layer falling off the leading edge of the cavity and the wake of the main strut which directly leads to the enhancement of the noise levels. Furthermore, after the noise sound waves are reflected by the doors several times, an interference phenomenon is generated between the doors. This interference may be a reason why the tone excited in the cavity is suppressed.


2021 ◽  
Author(s):  
Mitchell S. Mu ◽  
Jacob Schrass ◽  
Kevin F. Lieb ◽  
Darren J. Hartl

AIAA Journal ◽  
2020 ◽  
pp. 1-16
Author(s):  
Beckett Y. Zhou ◽  
Tim Albring ◽  
Nicolas R. Gauger ◽  
Carlos R. da Silva ◽  
Thomas D. Economon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document