interference phenomenon
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 47)

H-INDEX

24
(FIVE YEARS 4)

2D Materials ◽  
2021 ◽  
Author(s):  
Tommy Li ◽  
Max Geier ◽  
Julian Ingham ◽  
Harley Scammell

Abstract We discuss a pairing mechanism in interacting two-dimensional multipartite lattices that intrinsically leads to a second order topological superconducting state with a spatially modulated gap. When the chemical potential is close to Dirac points, oppositely moving electrons on the Fermi surface undergo an interference phenomenon in which the Berry phase converts a repulsive electron-electron interaction into an effective attraction. The topology of the superconducting phase manifests as gapped edge modes in the quasiparticle spectrum and Majorana Kramers pairs at the corners. We present symmetry arguments which constrain the possible form of the electron-electron interactions in these systems and classify the possible superconducting phases which result. Exact diagonalization of the Bogoliubov-de Gennes Hamiltonian confirms the existence of gapped edge states and Majorana corner states, which strongly depend on the spatial structure of the gap. Possible applications to vanadium-based superconducting kagome metals AV$_3$Sb$_3$ (A=K,Rb,Cs) are discussed.


Author(s):  
Xiaoli Chen ◽  
Jianfei Zhang ◽  
Xin Wang ◽  
Hui Guo ◽  
Yongqiang Zhu ◽  
...  

2021 ◽  
Vol 928 ◽  
Author(s):  
Zhi-Ming Yuan ◽  
Minglu Chen ◽  
Laibing Jia ◽  
Chunyan Ji ◽  
Atilla Incecik

It has been commonly observed on open waters that ducklings/goslings follow their mothers in a highly organized formation. The questions arise: (1) why are they swimming in formation? (2) what is the best swimming formation? (3) how much energy can be preserved by each individual in formation swimming? To address these questions, we established a simplified mathematical and numerical model and calculated the wave drag on a group of waterfowl in a swimming formation. We observed two new and interesting findings: wave-riding and wave-passing. By riding the waves generated by a mother duck, a trailing duckling can obtain a significant wave-drag reduction. When a duckling swims at the ‘sweet point’ behind its mother, a destructive wave interference phenomenon occurs and the wave drag of the duckling turns positive, pushing the duckling forward. More interestingly, this wave-riding benefit could be sustained by the rest of the ducklings in a single-file line formation. Starting from the third one in a queue, the wave drag of individuals gradually tended towards zero, and a delicate dynamic equilibrium was achieved. Each individual under that equilibrium acted as a wave passer, passing the waves’ energy to its trailing one without any energy losses. Wave-riding and wave-passing are probably the principal reasons for the evolution of swimming formation by waterfowl. This study is the first to reveal the reasons why the formation movement of waterfowl can preserve individuals’ energy expenditure. Our calculations provide new insights into the mechanisms of formation swimming.


2021 ◽  
Author(s):  
Vipul Sawant ◽  
Shraddha Garate

Abstract Mahanagar Gas is a City Gas Distribution Company engaged in the distribution of Natural Gas in and around Mumbai City. MGL has around 415 km of commissioned steel pipeline network which is being protected by ICCP. These pipelines are coated with three layer polyethylene coatings. Rectifying the external interferences on pipeline network is a major challenge for pipeline operating personnel in order to maintain safety and integrity of their pipeline. This technical paper is based on study of one of such external interference which posed a threat to MGL’s steel pipeline network. High Voltage Direct Current (HVDC) is a system for transmission of electricity over long distances. This system uses Direct Current (DC) for bulk transmission of electricity in contrast with the more common Alternating Current (AC) systems. HVDC is considered to be more effective to increase power grid delivery capabilities. A part of MGL’s pipeline network is currently facing interference due to a HVDC power substation on the outskirts of Mumbai. This substation is being operated by State Government and is affecting around 145 kms of MGL’s steel pipeline network during its monopolar operation for transmission of electricity. This interference is creating multiple anodic and cathodic areas on pipeline network with the help of a high magnitude current entering and exiting from pipeline at multiple locations which are difficult to predict and rectify. This technical paper will elaborate the concept of HVDC interference on steel pipelines. It will give a brief overview on the methodology adopted for identifying, monitoring and analyzing this interference phenomenon and will comment on the results of this analysis. It will throw light on a variety of technical challenges faced in dealing with this interference while operating a city gas distribution network in particular. And finally, it will discuss about possible remedial measures available and their effectiveness to curb this interference.


2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Dario Vangi ◽  
Mara Bruzzi ◽  
James N. Caron ◽  
Michelangelo S. Gulino

AbstractUltrasonic signal enhancement resulting from constructive interference between direct Rayleigh waves and same waves reflected by a surface defect is exploited to increase crack identification capabilities of the Gas-Coupled Laser Acoustic Detection (GCLAD) non-contact detection technology. Highlights from simulations are provided regarding the interference phenomenon in the solid and its propagation in air, where GCLAD detection occurs. Experimental campaigns are preliminarily performed on a bar to evidence the effect of cracks on the GCLAD acquired signals. Then, a signal enhancement of +30% is reached on a plate, implying that defects are efficiently scanned by moving the GCLAD in proximity of the discontinuity. Since the GCLAD allows monitoring points of a piece belonging to the same line at once, its translation in one direction is sufficient to perform a two-dimensional scan, entailing reduction of inspection time and simple automation of the interrogation layout compared to other traditional or signal enhancement-based techniques.


2021 ◽  
Vol 66 (4) ◽  
pp. 241-251
Author(s):  
E. A. Pashkov ◽  
E. R. Korchevaya ◽  
E. B. Faizuloev ◽  
O. A. Svitich ◽  
E. P. Pashkov ◽  
...  

COVID-19 has killed more than 4 million people to date and is the most significant global health problem. The first recorded case of COVID-19 had been noted in Wuhan, China in December 2019, and already on March 11, 2020, World Health Organization declared a pandemic due to the rapid spread of this infection. In addition to the damage to the respiratory system, SARS-CoV-2 is capable of causing severe complications that can affect almost all organ systems. Due to the insufficient effectiveness of the COVID-19 therapy, there is an urgent need to develop effective specific medicines. Among the known approaches to the creation of antiviral drugs, a very promising direction is the development of drugs whose action is mediated by the mechanism of RNA interference (RNAi). A small interfering RNA (siRNA) molecule suppresses the expression of a target gene in this regulatory pathway. The phenomenon of RNAi makes it possible to quickly create a whole series of highly effective antiviral drugs, if the matrix RNA (mRNA) sequence of the target viral protein is known. This review examines the possibility of clinical application of siRNAs aimed at suppressing reproduction of the SARS-CoV-2, taking into account the experience of similar studies using SARS-CoV and MERS-CoV infection models. It is important to remember that the effectiveness of siRNA molecules targeting viral genes may decrease due to the formation of viral resistance. In this regard, the design of siRNAs targeting the cellular factors necessary for the reproduction of SARS-CoV-2 deserves special attention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai-Qiang Lin ◽  
Chin Shen Ong ◽  
Sebastian Bange ◽  
Paulo E. Faria Junior ◽  
Bo Peng ◽  
...  

AbstractMonolayer transition-metal dichalcogenides (TMDCs) show a wealth of exciton physics. Here, we report the existence of a new excitonic species, the high-lying exciton (HX), in single-layer WSe2 with an energy of ~3.4 eV, almost twice the band-edge A-exciton energy, with a linewidth as narrow as 5.8 meV. The HX is populated through momentum-selective optical excitation in the K-valleys and is identified in upconverted photoluminescence (UPL) in the UV spectral region. Strong electron-phonon coupling results in a cascaded phonon progression with equidistant peaks in the luminescence spectrum, resolvable to ninth order. Ab initio GW-BSE calculations with full electron-hole correlations explain HX formation and unmask the admixture of upper conduction-band states to this complex many-body excitation. These calculations suggest that the HX is comprised of electrons of negative mass. The coincidence of such high-lying excitonic species at around twice the energy of band-edge excitons rationalizes the excitonic quantum-interference phenomenon recently discovered in optical second-harmonic generation (SHG) and explains the efficient Auger-like annihilation of band-edge excitons.


Uniciencia ◽  
2021 ◽  
Vol 35 (2) ◽  
pp. 1-17
Author(s):  
Alexis Debut ◽  
Theofilos Toulkeridis ◽  
Andrea V. Vaca ◽  
Carlos R. Arroyo

Volcanic cinder, also known as scoria, is an extrusive igneous rock that forms when gas-rich magmas of basaltic or andesitic composition cool quickly. It is typically dark in color, ranging from black to red depending on its chemical composition. Sometimes fresh cinder samples show a variety of shiny metallic colors on its surface ranging from blue to gold to silver. The origin of these colors has remained unknown up to now. Cinder samples from an eruptive event occurred in October 2005 have been collected in the surroundings of the Sierra Negra volcano in the Galápagos Islands. The samples’ crystallographic structure, chemical composition, and surface morphology have been analyzed using X-Ray diffractometry (XRD), energy dispersive X-Ray spectroscopy (EDS) and a field gun emission scanning electron microscopy (SEM), respectively. Based on an extensive physical and chemical analysis, we were able to demonstrate that these colors are due to a light interference phenomenon. These results have a great potential to be used for a wide variety of purposes such as determining the temperature and composition of magma and evaluating volcanic samples for planetary studies.


Sign in / Sign up

Export Citation Format

Share Document