monomial functions
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2011 ◽  
Vol 22 (06) ◽  
pp. 1331-1349 ◽  
Author(s):  
XUELIAN LI ◽  
YUPU HU ◽  
JUNTAO GAO

It is a difficult task to compute the r-th order nonlinearity of a given function with algebraic degree strictly greater than r > 1. Though lower bounds on the second order nonlinearity are known only for a few particular functions, the majority of which are cubic. We investigate lower bounds on the second order nonlinearity of cubic Boolean functions [Formula: see text], where [Formula: see text], dl = 2il + 2jl + 1, m, il and jl are positive integers, n > il > jl. Furthermore, for a class of Boolean functions [Formula: see text] we deduce a tighter lower bound on the second order nonlinearity of the functions, where [Formula: see text], dl = 2ilγ + 2jlγ + 1, il > jl and γ ≠ 1 is a positive integer such that gcd(n,γ) = 1. Lower bounds on the second order nonlinearity of cubic monomial Boolean functions, represented by fμ(x) = Tr(μx2i+2j+1), [Formula: see text], i and j are positive integers such that i > j, were obtained by Gode and Gangopadhvay in 2009. In this paper, we first extend the results of Gode and Gangopadhvay from monomial Boolean functions to Boolean functions with more trace terms. We further generalize and improve the results to a wider range of n. Our bounds are better than those of Gode and Gangopadhvay for monomial functions fμ(x). Especially, our lower bounds on the second order nonlinearity of some Boolean functions F(x) are better than the existing ones.


10.37236/1539 ◽  
1999 ◽  
Vol 7 (1) ◽  
Author(s):  
Luc Lapointe ◽  
A. Lascoux ◽  
J. Morse

We describe matrices whose determinants are the Jack polynomials expanded in terms of the monomial basis. The top row of such a matrix is a list of monomial functions, the entries of the sub-diagonal are of the form $-(r\alpha+s)$, with $r$ and $s \in {\bf N^+}$, the entries above the sub-diagonal are non-negative integers, and below all entries are 0. The quasi-triangular nature of these matrices gives a recursion for the Jack polynomials allowing for efficient computation. A specialization of these results yields a determinantal formula for the Schur functions and a recursion for the Kostka numbers.


Sign in / Sign up

Export Citation Format

Share Document