scholarly journals Determinantal Expression and Recursion for Jack Polynomials

10.37236/1539 ◽  
1999 ◽  
Vol 7 (1) ◽  
Author(s):  
Luc Lapointe ◽  
A. Lascoux ◽  
J. Morse

We describe matrices whose determinants are the Jack polynomials expanded in terms of the monomial basis. The top row of such a matrix is a list of monomial functions, the entries of the sub-diagonal are of the form $-(r\alpha+s)$, with $r$ and $s \in {\bf N^+}$, the entries above the sub-diagonal are non-negative integers, and below all entries are 0. The quasi-triangular nature of these matrices gives a recursion for the Jack polynomials allowing for efficient computation. A specialization of these results yields a determinantal formula for the Schur functions and a recursion for the Kostka numbers.

10.37236/8082 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
George Wang

Quasi-Yamanouchi tableaux are a subset of semistandard Young tableaux and refine standard Young tableaux. They are closely tied to the descent set of standard Young tableaux and were introduced by Assaf and Searles to tighten Gessel's fundamental quasisymmetric expansion of Schur functions. The descent set and descent statistic of standard Young tableaux repeatedly prove themselves useful to consider, and as a result, quasi-Yamanouchi tableaux make appearances in many ways outside of their original purpose. Some examples, which we present in this paper, include the Schur expansion of Jack polynomials, the decomposition of Foulkes characters, and the bigraded Frobenius image of the coinvariant algebra. While it would be nice to have a product formula enumeration of quasi-Yamanouchi tableaux in the way that semistandard and standard Young tableaux do, it has previously been shown by the author that there is little hope on that front. The goal of this paper is to address a handful of the numerous alternative enumerative approaches. In particular, we present enumerations of quasi-Yamanouchi tableaux using $q$-hit numbers, semistandard Young tableaux, weighted lattice paths, and symmetric polynomials, as well as the fundamental quasisymmetric and monomial quasisymmetric expansions of their Schur generating function.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience Noncommutative symmetric functions have many properties analogous to those of classical (commutative) symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials. Les fonctions symétriques non commutatives ont de nombreuses propriétés analogues à celles des fonctions symétriques classiques (commutatives). Par exemple, les fonctions de Schur en rubans (analogues de la base de Schur classique) admettent des développements à coefficients positifs dans la base des monômes non commutatifs. La plupart des propriétés classiques s'étendent au cas non commutatif, comme je le montrerai en introduisant une nouvelle famille de fonctions symétriques non commutatives, dépendant d'un paramètre. Cette famille semble être un analogue non commutatif approprié de la famille des polynômes de Hall-Littlewood.


10.1558/37291 ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 242-263
Author(s):  
Stefano Rastelli ◽  
Kook-Hee Gil

This paper offers a new insight into GenSLA classroom research in light of recent developments in the Minimalist Program (MP). Recent research in GenSLA has shown how generative linguistics and acquisition studies can inform the language classroom, mostly focusing on what linguistic aspects of target properties should be integrated as a part of the classroom input. Based on insights from Chomsky’s ‘three factors for language design’ – which bring together the Faculty of Language, input and general principles of economy and efficient computation (the third factor effect) for language development – we put forward a theoretical rationale for how classroom research can offer a unique environment to test the learnability in L2 through the statistical enhancement of the input to which learners are exposed.


1986 ◽  
Author(s):  
Emad El-Neweihi ◽  
Frank Proschan ◽  
Jayaram Sethuraman

2016 ◽  
Vol 63 (4) ◽  
pp. 1-60 ◽  
Author(s):  
Fedor V. Fomin ◽  
Daniel Lokshtanov ◽  
Fahad Panolan ◽  
Saket Saurabh

2021 ◽  
Vol 7 (3) ◽  
pp. 41
Author(s):  
Emre Baspinar ◽  
Luca Calatroni ◽  
Valentina Franceschi ◽  
Dario Prandi

We consider Wilson-Cowan-type models for the mathematical description of orientation-dependent Poggendorff-like illusions. Our modelling improves two previously proposed cortical-inspired approaches, embedding the sub-Riemannian heat kernel into the neuronal interaction term, in agreement with the intrinsically anisotropic functional architecture of V1 based on both local and lateral connections. For the numerical realisation of both models, we consider standard gradient descent algorithms combined with Fourier-based approaches for the efficient computation of the sub-Laplacian evolution. Our numerical results show that the use of the sub-Riemannian kernel allows us to reproduce numerically visual misperceptions and inpainting-type biases in a stronger way in comparison with the previous approaches.


Sign in / Sign up

Export Citation Format

Share Document