striatal necrosis
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Catarina Pinto ◽  
João Freixo ◽  
Ana Filipa Brandão ◽  
Marina Magalhães
Keyword(s):  

Author(s):  
Divya Nagabushana ◽  
Praveen-Kumar Srikanteswara ◽  
Archana Netto ◽  
Karthik Nagaraj

2021 ◽  
Vol 12 ◽  
Author(s):  
Hongyan Bi ◽  
Hui Guo ◽  
Qianfei Wang ◽  
Xiao Zhang ◽  
Yaming Zhao ◽  
...  

Background: Bilateral striatal necrosis (BSN) is characterized by symmetrical degeneration, predominantly of the caudate and putamen nucleus, in the basal ganglia. It is associated with numerous acquired and hereditary neuro-developmental and motor dysfunction-related pathological conditions. BSN results in high morbidity and mortality among infants and children, and its diagnosis is clinically challenging due to several overlapping disease phenotypes. Therefore, a precise genetic diagnosis is urgently needed for accurate genetic counseling and improved prognostic outcomes as well.Objective: To identify novel missense mutations in the NDUFAF5 gene as a cause of childhood BSN in members of a Chinese family and summarize the clinical characteristics of patients with the NDUFAF5 gene mutations.Methods: This study included a large family living in a remote northwestern area of China. Three siblings developed a neurological disorder characterized by generalized dystonia within the first decade of their lives. Cerebral computed tomography (CT) and magnetic resonance imaging (MRI) showed bilateral lesions of the putamen. Biochemical and genetic approaches were used to identify the cause of BSN.Results: Sequence analysis showed no pathogenic variation in PANK2, SLC25A19, SLC19A3, and NUP62 genes and in the entire mitochondrial genome as well. Whole-exome sequencing revealed compound heterozygous mutations consisting of NDUFAF5:c.425A > C(p.E142A) and c.836T > G (p.M279R). The father, a healthy sister, and a healthy brother of the affected siblings carried the c.836T > G mutation, and the mother carried the c.425A > C mutation. These variants were absent in 100 ethnically matched non-BSN controls. In silico analysis demonstrated that the E142A and M279R mutations in NDUFAF5 protein significantly perturbed the normal conformation of the protein due to alterations in the hydrogen bonding patterns around the evolutionarily conserved catalytic domains, leading to its loss of function in the early stage of mitochondrial complex I assembly.Conclusions: We identified a novel compound heterozygous mutation (c.425A > C and c.836T > G) in the NDUFAF5 gene as the potential cause of autosomal recessive childhood BSN, which extended the pathogenic variation spectrum of the NDUFAF5 gene. This study provides substantial evidence for further improvement of genetic counseling and better clinical management of BSN affected individuals.


Author(s):  
Ferdinand Dueñas Cabrera Filho ◽  
Bruno Niemeyer de Freitas Ribeiro ◽  
Edson Marchiori

Author(s):  
Mikuya IWANAGA ◽  
Ayaka KAMIKAWA ◽  
Naoto IMAI ◽  
Kaho SHIMADA ◽  
Yousuke DEGAWA ◽  
...  

Author(s):  
Francesco Porta ◽  
Barbara Siri ◽  
Nicoletta Chiesa ◽  
Federica Ricci ◽  
Lulash Nika ◽  
...  

AbstractObjectivesBiallelic mutations in the SLC25A19 gene impair the function of the thiamine mitochondrial carrier, leading to two distinct clinical phenotypes. Homozygosity for the c.530G > C mutation is invariably associated to Amish lethal microcephaly. The second phenotype, reported only in 8 patients homozygous for different non-Amish mutations (c.373G > A, c.580T > C, c.910G > A, c.869T > A, c.576G > C), is characterized by bilateral striatal necrosis and peripheral polyneuropathy. We report a new patient with the non-Amish SLC25A19 phenotype showing compound heterozygosity for the new variant c.673G > A and the known mutation c.373G > A.Case presentationThe natural history of non-Amish SLC25A19 deficiency is characterized by acute episodes of fever-induced encephalopathy accompanied by isolated lactic acidosis and Leigh-like features at magnetic resonance imaging (MRI). Acute episodes are prevented by high-dose thiamine treatment (600 mg/day). As shown in the new case, both mild clinical signs and basal ganglia involvement can precede the acute encephalopathic onset of the disease, potentially allowing treatment anticipation and prevention of acute brain damage. Peripheral axonal neuropathy, observed in 7 out of 9 patients, is not improved by thiamine therapy. In two early treated patients, however, peripheral neuropathy did not occur even on long-term follow-up, suggesting a potential preventive role of treatment anticipation also at the peripheral level.ConclusionsNon-Amish SLC25A19 deficiency is an extra-rare cause of Leigh syndrome responsive to thiamine treatment. Ex adiuvantibus thiamine treatment is mandatory in any patient with Leigh-like features.


Sign in / Sign up

Export Citation Format

Share Document