scholarly journals Signless Laplacian energy, distance Laplacian energy and distance signless Laplacian spectrum of unitary addition Cayley graphs

Author(s):  
Palanivel Naveen ◽  
A. V. Chithra
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
S. R. Jog ◽  
Raju Kotambari

Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under spectral graph theory. In this paper, we compute adjacency, Laplacian, and signless Laplacian energy (Qenergy) of coalescence of pair of complete graphs. Also, as an application, we obtain the adjacency energy of subdivision graph and line graph of coalescence from itsQenergy.


2018 ◽  
Vol 10 (06) ◽  
pp. 1850076 ◽  
Author(s):  
Maryam Maghsoudi ◽  
Abbas Heydari

Let [Formula: see text] be a simple graph with [Formula: see text] vertices and [Formula: see text] be a sequence of [Formula: see text] rooted graphs [Formula: see text]. The rooted product [Formula: see text], of [Formula: see text] by [Formula: see text] is constructed by identifying the root vertex of [Formula: see text] with the [Formula: see text]th vertex of [Formula: see text] for [Formula: see text]. In this paper, we introduce a method for computation of the characteristic polynomial of the signless Laplacian matrix of [Formula: see text]. Then the signless Laplacian spectrum and the signless Laplacian energy of some graphs will be computed.


2018 ◽  
Vol 10 (06) ◽  
pp. 1850074 ◽  
Author(s):  
Somnath Paul

Let [Formula: see text] and [Formula: see text] be three graphs on disjoint sets of vertices and [Formula: see text] has [Formula: see text] edges. Let [Formula: see text] be the graph obtained from [Formula: see text] and [Formula: see text] in the following way: (1) Delete all the edges of [Formula: see text] and consider [Formula: see text] disjoint copies of [Formula: see text]. (2) Join each vertex of the [Formula: see text]th copy of [Formula: see text] to the end vertices of the [Formula: see text]th edge of [Formula: see text]. Let [Formula: see text] be the graph obtained from [Formula: see text] by joining each vertex of [Formula: see text] with each vertex of [Formula: see text] In this paper, we determine the adjacency (respectively, Laplacian, signless Laplacian) spectrum of [Formula: see text] in terms of those of [Formula: see text] and [Formula: see text] As an application, we construct infinite pairs of cospectral graphs.


2010 ◽  
Vol 4 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Slobodan Simic ◽  
Zoran Stanic

A graph is called Q-integral if its signless Laplacian spectrum consists entirely of integers. We establish some general results regarding signless Laplacians of semiregular bipartite graphs. Especially, we consider those semiregular bipartite graphs with integral signless Laplacian spectrum. In some particular cases we determine the possible Q-spectra and consider the corresponding graphs.


2014 ◽  
Vol 06 (04) ◽  
pp. 1450050
Author(s):  
Lizhen Xu ◽  
Changxiang He

Let G be an r-regular graph with order n, and G ∨ H be the graph obtained by joining each vertex of G to each vertex of H. In this paper, we prove that G ∨ K2is determined by its signless Laplacian spectrum for r = 1, n - 2. For r = n - 3, we show that G ∨ K2is determined by its signless Laplacian spectrum if and only if the complement of G has no triangles.


10.37236/314 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jianfeng Wang ◽  
Francesco Belardo ◽  
Qiongxiang Huang ◽  
Enzo M. Li Marzi

A dumbbell graph, denoted by $D_{a,b,c}$, is a bicyclic graph consisting of two vertex-disjoint cycles $C_a$, $C_b$ and a path $P_{c+3}$ ($c \geq -1$) joining them having only its end-vertices in common with the two cycles. In this paper, we study the spectral characterization w.r.t. the adjacency spectrum of $D_{a,b,0}$ (without cycles $C_4$) with $\gcd(a,b)\geq 3$, and we complete the research started in [J.F. Wang et al., A note on the spectral characterization of dumbbell graphs, Linear Algebra Appl. 431 (2009) 1707–1714]. In particular we show that $D_{a,b,0}$ with $3 \leq \gcd(a,b) < a$ or $\gcd(a,b)=a$ and $b\neq 3a$ is determined by the spectrum. For $b=3a$, we determine the unique graph cospectral with $D_{a,3a,0}$. Furthermore we give the spectral characterization w.r.t. the signless Laplacian spectrum of all dumbbell graphs.


2019 ◽  
Vol 11 (2) ◽  
pp. 407-417 ◽  
Author(s):  
S. Pirzada ◽  
H.A. Ganie ◽  
A.M. Alghamdi

For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is equal to 1 if $v_i$ is adjacent to $v_j$ and equal to 0, otherwise. Let $D(G)={diag}(d_1, d_2, \dots, d_n)$ be the diagonal matrix associated to $G$, where $d_i=\deg(v_i),$ for all $i\in \{1,2,\dots,n\}$. The matrices $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$ are respectively called the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum ($L$-spectrum) and the signless Laplacian spectrum ($Q$-spectrum) of the graph $G$. If $0=\mu_n\leq\mu_{n-1}\leq\cdots\leq\mu_1$ are the Laplacian eigenvalues of $G$, Brouwer conjectured that the sum of $k$ largest Laplacian eigenvalues $S_{k}(G)$ satisfies $S_{k}(G)=\sum\limits_{i=1}^{k}\mu_i\leq m+{k+1 \choose 2}$ and this conjecture is still open. If $q_1,q_2, \dots, q_n$ are the signless Laplacian eigenvalues of $G$, for $1\leq k\leq n$, let $S^{+}_{k}(G)=\sum_{i=1}^{k}q_i$ be the sum of $k$ largest signless Laplacian eigenvalues of $G$. Analogous to Brouwer's conjecture, Ashraf et al. conjectured that $S^{+}_{k}(G)\leq m+{k+1 \choose 2}$, for all $1\leq k\leq n$. This conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds for $S^{+}_{k}(G)$ in terms of the clique number $\omega$, the vertex covering number $\tau$ and the diameter of the graph $G$. Finally, we show that the conjecture holds for large families of graphs.


Sign in / Sign up

Export Citation Format

Share Document