The regularity properties and blow-up of the solutions for nonlocal general wave equations

2022 ◽  
Vol 310 ◽  
pp. 138-163
Author(s):  
Veli B. Shakhmurov ◽  
Vural Bayrak ◽  
Rishad Shahmurov
2005 ◽  
Vol 5 (3) ◽  
pp. 223-241
Author(s):  
A. Carpio ◽  
G. Duro

AbstractUnstable growth phenomena in spatially discrete wave equations are studied. We characterize sets of initial states leading to instability and collapse and obtain analytical predictions for the blow-up time. The theoretical predictions are con- trasted with the numerical solutions computed by a variety of schemes. The behavior of the systems in the continuum limit and the impact of discreteness and friction are discussed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sun-Hye Park

AbstractIn this paper, we study the wave equation with frictional damping, time delay in the velocity, and logarithmic source of the form $$ u_{tt}(x,t) - \Delta u (x,t) + \alpha u_{t} (x,t) + \beta u_{t} (x, t- \tau ) = u(x,t) \ln \bigl\vert u(x,t) \bigr\vert ^{\gamma } . $$ u t t ( x , t ) − Δ u ( x , t ) + α u t ( x , t ) + β u t ( x , t − τ ) = u ( x , t ) ln | u ( x , t ) | γ . There is much literature on wave equations with a polynomial nonlinear source, but not much on the equations with logarithmic source. We show the local and global existence of solutions using Faedo–Galerkin’s method and the logarithmic Sobolev inequality. And then we investigate the decay rates and infinite time blow-up for the solutions through the potential well and perturbed energy methods.


2018 ◽  
Vol 11 (4) ◽  
pp. 983-1028 ◽  
Author(s):  
Thomas Duyckaerts ◽  
Jianwei Yang
Keyword(s):  
Blow Up ◽  

Sign in / Sign up

Export Citation Format

Share Document