semilinear problem
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Imed Bachar ◽  
Entesar Aljarallah

AbstractWe consider the following singular semilinear problem $$ \textstyle\begin{cases} \Delta u(x)+p(x)u^{\gamma }=0,\quad x\in D ~(\text{in the distributional sense}), \\ u>0,\quad \text{in }D, \\ \lim_{ \vert x \vert \rightarrow 0} \vert x \vert ^{n-2}u(x)=0, \\ \lim_{ \vert x \vert \rightarrow \infty }u(x)=0,\end{cases} $$ { Δ u ( x ) + p ( x ) u γ = 0 , x ∈ D ( in the distributional sense ) , u > 0 , in  D , lim | x | → 0 | x | n − 2 u ( x ) = 0 , lim | x | → ∞ u ( x ) = 0 , where $\gamma <1$ γ < 1 , $D=\mathbb{R}^{n}\backslash \{0\}$ D = R n ∖ { 0 } ($n\geq 3$ n ≥ 3 ) and p is a positive continuous function in D, which may be singular at $x=0$ x = 0 . Under sufficient conditions for the weighted function $p(x)$ p ( x ) , we prove the existence of a positive continuous solution on D, which could blow-up at the origin. The global asymptotic behavior of this solution is also obtained.


2021 ◽  
Vol 33 (1) ◽  
pp. 141-153
Author(s):  
N. Ustinov

Sufficient conditions are provided for the existence of a ground state solution for the problem generated by the fractional Sobolev inequality in Ω ∈ C 2 : \Omega \in C^2: ( − Δ ) S p s u ( x ) + u ( x ) = u 2 s ∗ − 1 ( x ) (-\Delta )_{Sp}^s u(x) + u(x) = u^{2^*_s-1}(x) . Here ( − Δ ) S p s (-\Delta )_{Sp}^s stands for the s s th power of the conventional Neumann Laplacian in Ω ⋐ R n \Omega \Subset \mathbb {R}^n , n ≥ 3 n \geq 3 , s ∈ ( 0 , 1 ) s \in (0, 1) , 2 s ∗ = 2 n / ( n − 2 s ) 2^*_s = 2n/(n-2s) . For the local case where s = 1 s = 1 , corresponding results were obtained earlier for the Neumann Laplacian and Neumann p p -Laplacian operators.


2021 ◽  
Vol 24 (5) ◽  
pp. 1409-1444
Author(s):  
Hernán R. Henríquez ◽  
Verónica Poblete ◽  
Juan C. Pozo

Abstract In this paper we establish the existence of solutions for the nonlinear abstract Cauchy problem of order α ∈ (1, 2), where the fractional derivative is considered in the sense of Caputo. The autonomous and nonautonomous cases are studied. We assume the existence of an α-resolvent family for the homogeneous linear problem. By using this α-resolvent family and appropriate conditions on the forcing function, we study the existence of classical solutions of the nonhomogeneus semilinear problem. The non-autonomous problem is discussed as a perturbation of the autonomous case. We establish a variation of the constants formula for the nonautonomous and nonhomogeneous equation.


Author(s):  
Juan-Carlos Felipe-Navarro

AbstractIn this work we prove the uniqueness of solutions to the nonlocal linear equation $$L \varphi - c(x)\varphi = 0$$ L φ - c ( x ) φ = 0 in $$\mathbb {R}$$ R , where L is an elliptic integro-differential operator, in the presence of a positive solution or of an odd solution vanishing only at zero. As an application, we deduce the nondegeneracy of layer solutions (bounded and monotone solutions) to the semilinear problem $$L u = f(u)$$ L u = f ( u ) in $$\mathbb {R}$$ R when the nonlinearity is of Allen–Cahn type. To our knowledge, this is the first work where such uniqueness and nondegeneracy results are proven in the nonlocal framework when the Caffarelli–Silvestre extension technique is not available. Our proofs are based on a nonlocal Liouville-type method developed by Hamel, Ros-Oton, Sire, and Valdinoci for nonlinear problems in dimension two.


2021 ◽  
pp. 1-20
Author(s):  
Yassine Benia ◽  
Boubaker-Khaled Sadallah

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ignacio Guerra

<p style='text-indent:20px;'>We consider the following semilinear problem with a gradient term in the nonlinearity</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} -\Delta u = \lambda \frac{(1+|\nabla u|^q)}{(1-u)^p}\quad\text{in}\quad\Omega,\quad u&gt;0\quad \text{in}\quad \Omega, \quad u = 0\quad\text{on}\quad \partial \Omega. \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda,p,q&gt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> be a bounded, smooth domain in <inline-formula><tex-math id="M3">\begin{document}$ {\mathbb R}^N $\end{document}</tex-math></inline-formula>. We prove that when <inline-formula><tex-math id="M4">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is a unit ball and <inline-formula><tex-math id="M5">\begin{document}$ p = 1 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M6">\begin{document}$ q\in (0,q^*(N)) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ q^*(N)\in (1,2) $\end{document}</tex-math></inline-formula>, we have infinitely many radial solutions for <inline-formula><tex-math id="M8">\begin{document}$ 2\leq N&lt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ \lambda = \tilde \lambda $\end{document}</tex-math></inline-formula>. On the other hand, for <inline-formula><tex-math id="M10">\begin{document}$ N&gt;2\frac{6-q+2\sqrt{8-2q}}{(2-q)^2}+1 $\end{document}</tex-math></inline-formula> there exists a unique radial solution for <inline-formula><tex-math id="M11">\begin{document}$ 0&lt;\lambda&lt;\tilde \lambda $\end{document}</tex-math></inline-formula>.</p>


2019 ◽  
Vol 147 (7) ◽  
pp. 2925-2936 ◽  
Author(s):  
Julián Fernández Bonder ◽  
Analía Silva ◽  
Juan Spedaletti

2018 ◽  
Vol 24 (4) ◽  
pp. 1221-1240
Author(s):  
Hamid Said

Entropy production in classical thermomechanical systems is the result of three sources: transfer of heat; dissipative stresses, such as viscosity; and internal variables. In this paper, a variational treatment for dissipative systems due to internal variables is presented. Specifically, in the context of the theory of internal variables, a novel dissipative Lagrangian–Hamiltonian formalism is developed. Two fundamental thermodynamic functions (the free energy and the entropy production rate) form the basis of this formalism. The Hamiltonian formulation reveals a new structure on the phase space, and is applied to prove large-time solutions for the semilinear problem. Finally, the formalism is applied to the problem of dynamic brittle fracture.


Sign in / Sign up

Export Citation Format

Share Document