concrete girders
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 54)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Alonso Gómez-Bernal ◽  
Eduardo Arellano Méndez ◽  
Luis Ángel Quiroz-Guzmán ◽  
Hugón Juárez-García ◽  
Oscar González Cuevas

This paper investigates the behavior of a transfer slab system used in medium rise building. For this purpose, two slab-wall full-scale specimens were designed, built, and tested to cyclic loads. The two slab-wall prototypes were exposed to three load stages: (a) vertical load, (b) horizontal load, and (c) vertical and horizontal combined load. The first specimen, SP1, includes a masonry wall situated on top of a squared two-way slab of 4.25 m by side, thickness of 12 cm, on four reinforced concrete girders, while the second specimen, SP2, consists of an identical slab but was constructed with a reinforced concrete wall. Some numerical finite element slab-wall models were built using linear and nonlinear models. The most important results presented herein are the change on lateral stiffness and resistance capacity of the load-bearing wall supported on a slab versus the wall supported on a fixed base and the effects that these walls cause on the slabs. During the experimental test process of horizontal loading, we detected that the stiffness of the two slab-wall systems decreased significantly compared to the one on the fixed base wall, a result supported by the numerical models. The models indicated suitable correlation and were used to conduct a detailed parametric study on various design configurations.


2021 ◽  
Vol 6 (6) ◽  
pp. 83
Author(s):  
Angelo Aloisio

The estimate of internal prestressing in concrete beams is essential for the assessment of their structural reliability. Many scholars have tackled multiple and diverse methods to estimate the measurable effects of prestressing. Among them, many experimented with dynamics-based techniques; however, these clash with the theoretical independence of the natural frequencies of the forces of internally prestressed beams. This paper examines the feasibility of a hybrid approach based on dynamic identification and the knowledge of the elastic modulus. Specifically, the author considered the effect of the axial deformation on the beam length and the weight per unit of volume. It is questioned whether the uncertainties related to the estimate of the elastic modulus and the first natural frequency yield reasonable estimates of the internal prestressing. The experimental testing of a set of full-scale concrete girders with known design prestressing supports a discussion about its practicability. The author found that the uncertainty in estimating the natural frequencies and elastic modulus significantly undermines a reliable estimate of the prestressing state.


Sign in / Sign up

Export Citation Format

Share Document