conservation targets
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 43)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
Walter Jetz ◽  
Jennifer McGowan ◽  
D. Scott Rinnan ◽  
Hugh P. Possingham ◽  
Piero Visconti ◽  
...  
Keyword(s):  

2021 ◽  
Vol 215 ◽  
pp. 104213
Author(s):  
Ana Sofia Vaz ◽  
Francisco Amorim ◽  
Paulo Pereira ◽  
Sandra Antunes ◽  
Hugo Rebelo ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Dang Toan Vu ◽  
Tuong Dang Vu ◽  
Janet Paofa ◽  
...  

Abstract Background Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were M. acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16–20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples from different individuals and 16 seed samples from one infructescence (‘bunch’) were analysed for each population. Results Allelic richness of seeds compared to populations was 51, 81 and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (> 15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 704
Author(s):  
Jianqiao Zhao ◽  
Yue Cao ◽  
Le Yu ◽  
Xiaoxuan Liu ◽  
Yichuan Shi ◽  
...  

Biodiversity conservation is the cornerstone for sustainable development. Bold conservation targets provide the last opportunities to halt the human-driven mass extinction. Recently, bold conservation targets have been proposed to protect 30% or 50% of Earth. However, little is known about its potential impacts on cropland. We identify potential cropland losses when 30% and 50% of global terrestrial area is given back to nature by 2030/2050, at three spatial scales (global, biome and country) and using two approaches (“nature-only landscapes” and “shared landscapes”). We find that different targets, applied scales and approaches will lead to different cropland losses: (1) At the global scale, it is possible to protect 50% of the Earth while having minimum cropland losses. (2) At biome scale, 0.64% and 8.54% cropland will be lost globally in 2030 and 2050 under the nature-only approach while by contrast, the shared approach substantially reduces the number of countries confronted by cropland losses, demanding only 0% and 2.59% of global cropland losses in 2030 and 2050. (3) At the national scale, the nature-only approach causes losses of 3.58% and 10.73% of global cropland in 2030 and 2050, while the shared approach requires 0.77% and 7.55% cropland in 2030 and 2050. Our results indicate that bold conservation targets could be considered, especially when adopting the shared approach, and we suggest adopting ambitious targets (protecting at least 30% by 2030) at the UN Biodiversity Conference (COP 15) to ensure a sustainable future for Earth.


2021 ◽  
Vol 120 ◽  
pp. 1-10
Author(s):  
Kaline de Mello ◽  
Arthur Nicolaus Fendrich ◽  
Gerd Sparovek ◽  
Jeremy S. Simmonds ◽  
Martine Maron ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Simon Kallow ◽  
Bart Panis ◽  
Toan Vu Dang ◽  
Tuong Vu Dang ◽  
Janet Paofa ◽  
...  

Background: Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were Musa acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16-20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples and 16 seed samples from one infructescence ('bunch') for each population. Results: Allelic richness of seeds compared to populations was 51%, 81% and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (>15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions: We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species.


Sign in / Sign up

Export Citation Format

Share Document