hanna basin
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 17)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 55 (2) ◽  
pp. 91-129
Author(s):  
Jason A. Lillegraven

ABSTRACT The geologic history of Wyoming’s Hanna Basin is still being written. Surprisingly, here appeared an opportunity to share insights from previously accomplished work with that conducted anew by other scholars. The area of study was in the southeastern quadrant of Wyoming, which exhibits the state’s most complex history with respect to the Laramide orogeny. Especially important for present purposes were the tectonic conditions of the late Paleocene and earliest Eocene, recorded within the Hanna Formation. Of central focus is the 2020 publication by Dechesne and her six co-authors. Geographically, the landscape they covered was a thin, synclinal slice of the northeastern margin of the Hanna Basin. Key goals for the present publication have been to illustrate positive linkages and to highlight discrepancies between Dechesne et al. (2020) and relevant prior geological work. A concern that permeates all facets of this approach is the ability to verify viability of brand-new geologic descriptions, data, and resulting conclusions. Essential graphical elements were introduced first into this present publication. Once that package of background information was available, more focused analyses were rigorously pursued on diverse issues within the Dechesne et al. (2020) publication. Dechesne’s team presented a significantly modified but adequately defended approximation of the Paleocene–Eocene boundary. Data from fossil plants (macro- and palynofloras), continental mollusks, and bulk organic-carbon isotopes all agree within one measured section (of five sections studied) with an approximated Paleocene–Eocene boundary along with a ‘carbon isotope excursion’ (CIE). Strength of available evidence seems questionable, however, in that the inordinately high variability in bulk organic carbon (characteristic of a CIE) has been demonstrated only in the Hanna Draw Section. Although fluvial, paludal, and lacustrine facies are considered in several contexts, in no sense does the publication’s organizational form provide a ‘detailed stratigraphic framework.’ One zircon-based U–Pb depositional date (54.42 ± 0.27 Ma) came from this study that matched early Wasatchian time. Participants in the Dechesne et al. (2020) project are to be commended in that their resulting paper ranged broadly across the geologic setting, stratigraphy, paleocurrents, paleobotany, continental mollusks, zircon geochronology, associated lithofacies, and paleogeography. Despite that breadth, there exists a plethora of unexpected and wholly avoidable inconsistencies, strong contradictions within what should be homogeneous datasets, and seemingly inexplicable omissions of obviously necessary and sometimes clearly existing but unutilized data, one must question the reliability of much of the information presented in their paper.


Geosphere ◽  
2020 ◽  
Vol 16 (2) ◽  
pp. 594-618
Author(s):  
Marieke Dechesne ◽  
Ellen D. Currano ◽  
Regan E. Dunn ◽  
Pennilyn Higgins ◽  
Joseph H. Hartman ◽  
...  

Abstract The Paleocene–Eocene strata of the rapidly subsiding Hanna Basin give insights in sedimentation patterns and regional paleogeography during the Laramide orogeny and across the climatic event at the Paleocene–Eocene Thermal Maximum (PETM). Abundant coalbeds and carbonaceous shales of the fluvial, paludal, and lacustrine strata of the Hanna Formation offer a different depositional setting than PETM sections described in the nearby Piceance and Bighorn Basins, and the uniquely high sediment accumulation rates give an expanded and near-complete record across this interval. Stratigraphic sections were measured for an ∼1250 m interval spanning the Paleocene–Eocene boundary across the northeastern syncline of the basin, documenting depositional changes between axial fluvial sandstones, basin margin, paludal, floodplain, and lacustrine deposits. Leaf macrofossils, palynology, mollusks, δ13C isotopes of bulk organic matter, and zircon sample locations were integrated within the stratigraphic framework and refined the position of the PETM. As observed in other basins of the same age, an interval of coarse, amalgamated sandstones occurs as a response to the PETM. Although this pulse of relatively coarser sediment appears related to climate change at the PETM, it must be noted that several very similar sandstone bodies occur with the Hanna Formation. These sandstones occur in regular intervals and have an apparent cyclic pattern; however, age control is not sufficient yet to address the origin of the cyclicity. Signs of increased ponding and lake expansion upward in the section appear to be a response to basin isolation by emerging Laramide uplifts.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7798
Author(s):  
Lauren E. Azevedo Schmidt ◽  
Regan E. Dunn ◽  
Jason Mercer ◽  
Marieke Dechesne ◽  
Ellen D. Currano

Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene­–Eocene boundary in the Hanna Basin, southeastern Wyoming. This particular location is unlike other nearby Laramide basins because it has an abundance of late Paleocene and Eocene coal and carbonaceous shales and paucity of well-developed paleosols, suggesting perpetually high water availability. We sampled approximately 800 semi-intact dicot leaves from five stratigraphic levels, one of which occurs late in the Paleocene–Eocene thermal maximum (PETM). Field collections were supplemented with specimens at the Denver Museum of Nature & Science. Fossil leaves were classified into morphospecies and herbivore damage was documented for each leaf. We tested for changes in plant and insect herbivore damage diversity using rarefaction and community composition using non-metric multidimensional scaling ordinations. We also documented changes in depositional environment at each stratigraphic level to better contextualize the environment of the basin. Plant diversity was highest during the mid-late Paleocene and decreased into the Eocene, whereas damage diversity was highest at the sites with low plant diversity. Plant communities significantly changed during the late PETM and do not return to pre-PETM composition. Insect herbivore communities also changed during the PETM, but, unlike plant communities, rebound to their pre-PETM structure. These results suggest that insect herbivore communities responded more strongly to plant community composition than to the diversity of species present.


Sign in / Sign up

Export Citation Format

Share Document