Rocky Mountain Geology
Latest Publications


TOTAL DOCUMENTS

231
(FIVE YEARS 14)

H-INDEX

19
(FIVE YEARS 1)

Published By "Rocky Mountain Geology, University Of Wyoming"

1555-7340, 0010-7980

2021 ◽  
Vol 56 (1) ◽  
pp. 19-36
Author(s):  
Clay Robertson ◽  
Greg A. Ludvigson ◽  
R.M. Joeckel ◽  
Sahar Mohammadi ◽  
James I. Kirkland

ABSTRACT Previously published anomalous whole-rock stable isotopic values from the Poison Strip Sandstone Member of the Cretaceous Cedar Mountain Formation (CMF) of eastern Utah are of uncertain origins. This study investigated the diagenetic history and the processes responsible for these anomalous data. Accordingly, we integrated photomicroscopic techniques including polarized light microscopy, epifluorescence and cathodoluminescence (CL) imaging, micromilling of stable isotope samples, and fluid-inclusion heating and freezing measurements to this end. The key observations involved the microscopic mapping of calcite cement stratigraphy using CL imaging to permit the analysis of stable isotopes of calcite cements that crystallized during early and late diagenesis. The mapping of calcite cement zones of sufficient submillimeter size to mill out and isolate microgram-sized stable isotope samples enabled this discrimination. Early diagenetic calcite cements have the most positive δ18O values (-10 to -8.5‰ Vienna Pee Dee Belemnite [VPDB]) of all components. The pattern of δ13C and δ18O variation in this early diagenetic cement indicates affinities with early meteoric diagenesis previously documented in published literature on the CFM. The late diagenetic calcite cements yield the most negative δ18O values (-18 to -16‰ VPDB). We interpret the late diagenetic cements to be responsible for the anomalously low whole-rock δ18O values previously reported from the Poison Strip Sandstone Member. Our discoveries of bitumen in late-stage pore fillings and liquid petroleum in the fluid inclusions of late diagenetic calcite cements of the Poison Strip Sandstone Member explain the lower whole-rock organic matter δ13C values and anomalous Δ13C values reported from the unit. Comparatively lower carbonate δ18O and organic δ13C values originally derived from whole-rock analyses of samples from the Poison Strip Sandstone Member resulted from high-temperature basinal diagenesis (hydrothermal circulation and/or petroleum migration), rather than the alternative interpretation of early diagenesis related to a Cretaceous paleoclimatic perturbation. Our results are illustrative of methods to resolve the long-standing geologic problem of discriminating and characterizing products of early vs. late diagenesis in terrigenous clastic sedimentary strata.


2021 ◽  
Vol 56 (1) ◽  
pp. 1-18
Author(s):  
Markus B. Raschke ◽  
Charles R. Stern ◽  
Evan J. D. Anderson ◽  
M. Alexandra Skewes ◽  
G. Lang Farmer ◽  
...  

ABSTRACT A previously undescribed small lenticular (~5 × 5 × 5 m) pegmatite, located near Wellington Lake in the NW part of the 1.08 Ga ‘A-type’ (anorogenic) ferroan Pikes Peak granite batholith, ~15 km SW of the South Platte pegmatite district in central Colorado, is concentrically zoned around a mostly monomineralic quartz core with interconnected miarolitic cavities. Major constituents of the Wellington Lake pegmatite are quartz, perthitic microcline, albite (variety cleavelandite), hematite, and biotite. Accessory minerals include fluocerite, bastnäsite, columbite, zircon (var. ‘cyrtolite’), thorite, and secondary U phases. Fluorite is conspicuously absent, although it is a common phase in the South Platte district NYF-type pegmatites, which are rich in niobium (Nb), yttrium (Y), fluorine (F), and heavy rare-earth elements (HREE). Notable for the Wellington Lake pegmatite are a small quantity of well-developed tabular crystals of fluocerite that reach up to 4 cm in diameter, with sub-mm epitaxial bastnäsite overgrowths, suggesting formation from F- and CO2-bearing solutions rich in light rare-earth elements (LREE), with decreasing a(F-)/a(CO32-) during the last crystallization phase. An Nd-isotope value of εNd1.08Ga = -1.6 for the fluocerite is within the range of εNd1.08Ga = -0.2 to -2.7 of the host coarse-grained, pink K-series Pikes Peak Granite (PPG), indicating that REE and other pegmatite constituents derived from the parental PPG magma. A calculation of total pegmatite composition based on whole-rock chemistry and volume estimates of the different pegmatite zones reveals an overall composition similar to the PPG with respect to Si, Al, Na, and K. Yet the pegmatite is depleted in Fe, Mg, Ca, Ti, Mn, and P, the high-field-strength elements (HFSE; Zr, Hf, Nb, Y, Th), and, most significantly, total REE compared to the PPG. Despite containing the LREE minerals fluocerite and bastnäsite, the lack of a net overall REE enrichment of the pegmatite compared to the PPG reflects the large amount of REE-poor silicate minerals forming the wall, intermediate, and core zones of the pegmatite. The calculated total pegmatite composition suggests that the pegmatite formed by the separation from the PPG magma of an F-poor H2O-saturated silicate melt depleted in REE and HFSE compared to the F-rich melts, which formed the NYF-type HREE-rich (LaN/YbN < 1) pegmatites in the South Platte district. Homogenization temperatures of < 500°C for possibly primary fluid inclusions in large quartz crystals from the core of the Wellington Lake pegmatite are consistent with recent models of pegmatite petrogenesis leading to nucleation controlled mega-crystal growth resulting from supercooling.


2021 ◽  
Vol 56 (1) ◽  
pp. 37-50
Author(s):  
Rory E. Sweedler ◽  
Jaelyn J. Eberle ◽  
Matthew C. Mihlbachler

ABSTRACT Late Eocene brontotheres are documented most prevalently from formations in the Great Plains of North America. Here we describe UCM 109045, a mandible and lower dentition of a brontothere recovered from a latest Eocene (Chadronian) locality in the Antero Formation in South Park, Colorado. This is a high-altitude locality in which vertebrate fossils are rare. Lower incisor number and presence of a long postcanine diastema indicate that UCM 109045 does not belong to Megacerops coloradensisLeidy, 1870, by far the most abundant brontothere from the Chadronian North American Land Mammal Age. Instead, UCM 109045 is morphologically most similar to Protitanops curryiStock, 1936, from the early Chadronian of the southwestern United States, and nomen dubium Megacerops primitivusLambe, 1908, from the Chadronian of Saskatchewan, Canada. It is possible that Megacerops kuwagatarhinusMader and Alexander, 1995, is a junior synonym of M. primitivus. If UCM 109045 belongs to Megacerops primitivus (= M. kuwgatarhinus), it would support the hypothesis that only two species of brontothere—M. primitivus (= M. kuwgatarhinus) and M. coloradensis—survived into the latest Eocene. Regardless of its exact identification, the discovery of UCM 109045 in the Antero Formation provides insight into a poorly understood, high-altitude locality in North America from just before brontothere extinction at the Eocene–Oligocene boundary.


2020 ◽  
Vol 55 (2) ◽  
pp. 91-129
Author(s):  
Jason A. Lillegraven

ABSTRACT The geologic history of Wyoming’s Hanna Basin is still being written. Surprisingly, here appeared an opportunity to share insights from previously accomplished work with that conducted anew by other scholars. The area of study was in the southeastern quadrant of Wyoming, which exhibits the state’s most complex history with respect to the Laramide orogeny. Especially important for present purposes were the tectonic conditions of the late Paleocene and earliest Eocene, recorded within the Hanna Formation. Of central focus is the 2020 publication by Dechesne and her six co-authors. Geographically, the landscape they covered was a thin, synclinal slice of the northeastern margin of the Hanna Basin. Key goals for the present publication have been to illustrate positive linkages and to highlight discrepancies between Dechesne et al. (2020) and relevant prior geological work. A concern that permeates all facets of this approach is the ability to verify viability of brand-new geologic descriptions, data, and resulting conclusions. Essential graphical elements were introduced first into this present publication. Once that package of background information was available, more focused analyses were rigorously pursued on diverse issues within the Dechesne et al. (2020) publication. Dechesne’s team presented a significantly modified but adequately defended approximation of the Paleocene–Eocene boundary. Data from fossil plants (macro- and palynofloras), continental mollusks, and bulk organic-carbon isotopes all agree within one measured section (of five sections studied) with an approximated Paleocene–Eocene boundary along with a ‘carbon isotope excursion’ (CIE). Strength of available evidence seems questionable, however, in that the inordinately high variability in bulk organic carbon (characteristic of a CIE) has been demonstrated only in the Hanna Draw Section. Although fluvial, paludal, and lacustrine facies are considered in several contexts, in no sense does the publication’s organizational form provide a ‘detailed stratigraphic framework.’ One zircon-based U–Pb depositional date (54.42 ± 0.27 Ma) came from this study that matched early Wasatchian time. Participants in the Dechesne et al. (2020) project are to be commended in that their resulting paper ranged broadly across the geologic setting, stratigraphy, paleocurrents, paleobotany, continental mollusks, zircon geochronology, associated lithofacies, and paleogeography. Despite that breadth, there exists a plethora of unexpected and wholly avoidable inconsistencies, strong contradictions within what should be homogeneous datasets, and seemingly inexplicable omissions of obviously necessary and sometimes clearly existing but unutilized data, one must question the reliability of much of the information presented in their paper.


2020 ◽  
Vol 55 (2) ◽  
pp. 75-89
Author(s):  
J. Daniel Quick ◽  
John P. Hogan ◽  
Michael Wizevich ◽  
Jonathan Obrist-Farner ◽  
James L. Crowley

ABSTRACT The temporal and spatial distribution of strain associated with the Sevier orogeny in western North America is significantly different in the southern end of the belt, at the latitude of Las Vegas, Nevada, than farther to the north at the latitude of Salt Lake City, Utah. Reasons for these differences have been speculative as a lack of temporal constraints on thrusting in the intervening region hindered along-strike correlation across the belt. We determined a crystallization age of 100.18 ± 0.04 Ma for zircons extracted from a recently recognized dacite lapilli ash-fall tuff near the base of the synorogenic Iron Springs Formation. We propose the name “Three Peaks Tuff Member” for this unit, and identify a type stratigraphic section on the western flank of the “Three Peaks,” a topographic landmark in Iron County, Utah. Field relationships and this age constrain movement on the Iron Springs thrust and the end of the sub-Cretaceous unconformity in the critical intervening area to latest Albian/earliest Cenomanian. Movement on the Iron Springs thrust was synchronous with movement on multiple Sevier thrusts at ~100 Ma, indicating that the mid-Cretaceous was a period of extensive thrust-fault movement. This mid-Cretaceous thrusting event coincided with a period of global plate reorganization and increased convergence, and hence an increased subduction rate for the Farallon Plate beneath North America. The accelerated subduction contributed to a Cordilleran arc flare-up event and steepening of the orogenic wedge, which triggered widespread thrusting across the retroarc Sevier deformation belts. Additionally, based on temporal constraints and the strong spatial connection of mid-Cretaceous thrusts to lineaments interpreted as pre-orogenic transform faults, we suggest that temporal and spatial variations along the strike of the orogenic belt reflect tectonic inheritance of basement structures associated with the edge of the rifted Precambrian craton.


2020 ◽  
Vol 55 (1) ◽  
pp. 1-26
Author(s):  
Dirk M. Rasmussen ◽  
Brady Z. Foreman ◽  
Henry C. Fricke ◽  
Kathryn Snell ◽  
Lindsey Gipson ◽  
...  

ABSTRACT Sedimentary basins throughout the North American Western Interior contain a record of Late Cretaceous through Eocene deposition related to the Laramide orogeny. The typical stratigraphic progression includes an uppermost Cretaceous fluvio-deltaic geologic formation that is unconformably overlain by an alluvial or paludal Paleocene geologic formation. The Paleocene unit is usually characterized by drab overbank facies, and overlain by an interval of amalgamated fluvial sand bodies. The overlying Eocene geologic units are characterized by red bed overbank facies. These major stratigraphic changes have been variably linked to long-wavelength dynamic subsidence, local uplift, and climatic shifts. Herein, we evaluate the depositional history of the Huerfano Basin of south-central Colorado in this overarching context. Our study presents a detailed lithofacies analysis of the Poison Canyon, Cuchara, and Huerfano Formations integrated with a new bulk (1) organic carbon isotope record, n = 299 measurements (Data Supplement 1A); and (2) magnetic record, n = 247 measurements (Data Supplement 1B). We interpret that the Paleocene Poison Canyon Formation was deposited by a braided or coarse-grained meandering river system with relatively poorly drained floodplains. The Eocene Huerfano Formation was likely deposited by a coarse-grained meandering river system with a comparatively well-drained floodplain. This pattern mirrors other Laramide basins, and is likely related to a regional drying pattern linked to long-term warming during the early Paleogene. Age of the intervening Cuchara Formation is poorly resolved, but is an anomalously thick and coarse-grained fluvial unit, with evidence for extensive reworking of floodplain deposits and a moderate coarsening-upward pattern. The Cuchara Formation is associated with magnetic trends that suggest greater oxidation and weathering, and greater variability in rainfall patterns, as well as a subtle negative shift in carbon isotope values. This pattern indicates a period of widespread progradation within the basin, potentially related to a major Laramide uplift event that affected Colorado’s Wet Mountains, Front Range, and Sangre de Cristo Mountains.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-54
Author(s):  
Maureen Kahn ◽  
Annia K. Fayon ◽  
Basil Tikoff

ABSTRACT The abrupt boundary between accreted terranes and cratonic North America is well exposed along the Salmon River suture zone in western Idaho and eastern Oregon. To constrain the post-suturing deformation of this boundary, we assess the cooling history using zircon and apatite (U–Th)/He thermochronology. Pre-Miocene granitic rocks, along a regional transect, were sampled from accreted terranes of the Blue Mountains Province to cratonic North America (Idaho batholith). Each sample was taken from a known structural position relative to a paleotopographic surface represented by the basal unit of the Miocene Columbia River basalts. An isopach map constructed for the Imnaha Basalt, the basal member of the Columbia River Basalt Group (CRBG), confirms the presence of a Miocene paleocanyon parallel to the northern part of Hells Canyon. The (U–Th)/He zircon dates indicate mostly Cretaceous cooling below 200°C, with the ages getting generally younger from west to east. The (U–Th)/He apatite dates indicate Late Cretaceous–Paleogene cooling, which post-dates tectonism associated with the western Idaho shear zone (WISZ). However, (U–Th)/He apatite dates younger than the Imnaha Basalt, with one date of 3.4 ± 0.6 Ma, occur at the bottom of Hells Canyon. These young (U–Th)/He apatite dates occur along the trend of the Miocene paleocanyon, and cannot be attributed to local exhumation related to faults. We propose that burial of Mesozoic basement rocks by the Columbia River basalts occurred regionally. However, the only samples currently exposed at the Earth’s surface that were thermally reset by this burial were at the bottom of the Miocene paleocanyon. If so, exhumation of these samples must have occurred by river incision in the last 4 million years. Thus, the low-temperature thermochronology data record a combination of Late Cretaceous–Paleogene cooling after deformation along the WISZ that structurally overprinted the suture zone and Neogene cooling associated with rapid river incision.


2020 ◽  
Vol 55 (1) ◽  
pp. 55-73
Author(s):  
Eric R. Meyer ◽  
Ron A. Harris

ABSTRACT Structural and geomorphic studies, and lithostratigraphic and biostratigraphic mapping reveal that a giant toreva block (6.125 km3) slid off Mount Timpanogos toward what are now densely populated urban areas along the Wasatch Front of Utah. The block forms a prominent peak known as Big Baldy, which consists of steeply dipping and locally brecciated limestone and quartzarenite over nearly horizontal shale. Preferential erosion of this shale below overlying limestone and quartzarenite cliffs is most likely the cause of this particular landslide and potential future slides along the Wasatch Front. The low-angle contact at the base of the giant toreva block was initially mapped as a thrust, then as a low-angle normal fault. In both cases, these faults were inferred to have large amounts of displacement (900 meters), but no traces of such faults are found in adjacent canyons. The Baldy slide is associated with geomorphologic features, such as faceted spurs, landslide scarps, sackungen, and hummocky terrain. Limestone and quartzarenite beds in the block are back-rotated up to 80° and are locally broken and brecciated. No evidence of hydro-fracturing is found in the breccia or of multiple brecciation episodes, which indicates surficial rather than deep-crustal processes and perhaps a single event of slip. We speculate based on structural reconstructions of the slide block, and interpolation of maximum downcutting rates on nearby streams, that the slide initiated between 700 and 500 ka. Discovery of the Baldy slide attests to the importance of recognizing the influence of surficial processes in mountain front development and demonstrate the ongoing geologic hazard of mass wasting to communities along the seismically active Wasatch Front and similar horst blocks.


2019 ◽  
Vol 54 (2) ◽  
pp. 133-153
Author(s):  
Anthony J. Fuentes ◽  
William C. Clyde ◽  
Ken Weissenburger ◽  
Antoine Bercovici ◽  
Tyler R. Lyson ◽  
...  

ABSTRACT The Cretaceous–Paleogene (K–Pg) boundary interval represents one of the most significant mass extinctions and ensuing biotic recoveries in Earth history. Earliest Paleocene fossil mammal faunas corresponding to the Puercan North American Land Mammal Age (NALMA) are thought to be highly endemic and potentially diachronous, necessitating precise chronostratigraphic controls at key fossil localities to constrain recovery dynamics in continental biotas following the K–Pg mass extinction. The Laramide synorgenic sedimentary deposits within the Denver Basin in east-central Colorado preserve one of the most continuous and fossiliferous records of the K–Pg boundary interval in North America. Poor exposure in much of the Denver Basin, however, makes it difficult to correlate between outcrops. To constrain fossil localities in coeval strata across the basin, previous studies have relied upon chronostratigraphic methods such as magnetostratigraphy. Here, we present a new high-resolution magnetostratigraphy of 10 lithostratigraphic sections spanning the K–Pg boundary interval at Corral Bluffs located east of Colorado Springs in the southern part of the Denver Basin. Fossil localities from Corral Bluffs have yielded limited dinosaur remains, mammal fossils assigned to the Puercan NALMA, and numerous fossil leaf localities. Palynological analyses identifying the K–Pg boundary in three sections and two independent, but nearly identical, 206Pb/238U age estimates for the same volcanic ash, provide key temporal calibration points. Our paleomagnetic analyses have identified clear polarity reversal boundaries from chron C30n to chron C28r across the sections. It is now possible to place the fossil localities at Corral Bluffs within the broader basin-wide chronostratigraphic framework and evaluate them in the context of K–Pg boundary extinction and recovery.


2019 ◽  
Vol 54 (2) ◽  
pp. 97-131
Author(s):  
Benjamin J. Drenth ◽  
V.J.S. Grauch ◽  
Kenzie J. Turner ◽  
Brian D. Rodriguez ◽  
Ren A. Thompson ◽  
...  

ABSTRACT Interpretation of gravity, magnetotelluric, and aeromagnetic data in conjunction with geologic constraints reveals details of basin geometry, thickness, and spatiotemporal evolution of the southern San Luis Basin, one of the major basins of the northern Rio Grande rift. Spatial variations of low-density basin-fill thickness are estimated primarily using a 3D gravity inversion method that improves on previous modeling efforts by separating the effects of the low-density basin fill from the effects of pre-rift rocks. The basin is found to be significantly narrower—and more complex in the subsurface—than indicated or implied by previous modeling efforts. The basin is also estimated to be significantly shallower than previously estimated. Five distinct subbasins are recognized within the broader southern San Luis Basin. The oldest and shallowest subbasin is the Las Mesitas graben along the northwestern basin margin, formed during the Oligocene transition from Southern Rocky Mountain volcanic field magmatism to rifting. In this subbasin, sediments are estimated to reach a maximum thickness of ~400 m within a north–south elongated structural depression. Other subbasins that likely initially developed during the Miocene are the dominant tectonic features in the southern San Luis Basin. This includes the Tres Orejas subbasin, which formed in the southwestern portion of the basin by the Embudo fault zone and a hypothesized fault zone along its western margin. This subbasin reaches a maximum thickness of ~2 km, as indicated by magnetotelluric and gravity modeling. The Sunshine Valley, Questa, and Taos subbasins occupy the eastern part of the southern San Luis Basin. The southern Sangre de Cristo fault zone is the dominant tectonic feature that controlled their development after ~20 Ma. The east-down Gorge fault zone controlled the western margins of significant parts of these eastern subbasins, although much of the Taos subbasin may be superimposed on the Tres Orejas subbasin. Maximum low-density basin-fill thicknesses are estimated to be 1.2 km for the Sunshine Valley subbasin, 800 m for the Questa subbasin, and 1.8 km for the Taos subbasin. Subbasin-forming tectonic activity along the Gorge fault zone and within the Tres Orejas subbasin ceased by the end of the development of the largely Pliocene Taos Plateau volcanic field. After that, rift-related subsidence became more narrowly centered on the eastern margin of the basin, controlled mainly by the linked Embudo and southern Sangre de Cristo fault zones.


Sign in / Sign up

Export Citation Format

Share Document